
25990-HO25-RO-O0

,NASA CR-

TRW NOTE NO. 74-FMT-937

tO
a) 02 JSC/TRW TASK 531

rl
04
>4

HEl

C)
0

i-I
U
to

LEVEL IIMDAS PROTOTYPE MONITOR

PROGRAM DOCUMENT

(PART II)

-- Id>

U) t 14 June 1974

04

oco

I 1
r' Z

M 4

4 CD

Prepared for

Mission Planning and Analysis DivisionC
National Aeronautics and Space Administration

Johnson Space Center
ostn Texas

d >

10

SAS 9-.13834

Prepared by -

Systems Evaluation Department

25990-HO25-RO-O0

TRW NOTE NO. 74-FMT-937

JSC/TRW TASK 531

LEVEL IIMDAS PROTOTYPE MONITOR

PROGRAM DOCUMENT

(PART II)

14 June 1974

Prepared for

Mission Planning and Analysis Division

National-Aeronautics and Space Administration

Johnson Space Center

Houston, Texas

NAS 9-13834

Prepared by

Systems Evaluation Department

L. Ellisor, Jr., Tak Manager
JSC/TRW Task 531

R. K. Petersburg, Manager(
Systems Evaluation Depart ent

Assistant Project Manager

VMMPS

Mission Trajectory Control Program

Table of.Contents

Date Delivered Page

4/30 1. Resident l.1-1
4/30 2. Monitor Boot Logic 2.1-1

3. User Communications

5/31 3.1 MDBCDI 3.1-1

5/31 3.2 MDBCI2 3.2-1

5/31 3.3 MDCDAT 3.3-1

-5/31 3.4 MDCONV
 3.4-1

5/31 3.5 MDPCK 3.5-1

4/30 3.6 MDPRMH 3.6-1

4/30 -3.7 MDPRMI 3.7-1

4/30 3.8 MDPRMR 3.8-1

5/31 3.9 MDPRMT 3.9-1

5/31 3.10 MDSCAN 3.10-1

5/31 3.11 MDSqZB 3.11-1

4. Storage Monitor

5/31 4.1 MDELET 4.1-1

5/31 4.2 MDENTR 4.2-T

5/31 4.3 MDFIND 4.3-1

5/31 4.4 MDGET 4.4-1

5/31 4.5 MDPACK 4.5-1

5/31 4.6 MDPUT 4.6-1

5/31 4.7 MDRADI 4.7-1

5/31 4.8 MDROLL 4.8-1

5. Execution Controller

5/31 5.1 MDALOC 5.1-1

4/30 5.2 MDCMTG 5.2-1

4/30 5.3 MDCMTV 5.3-1

5/31 5.4 MDMERG
 5.4-1

5/31 5.5 MDPRT 5.5-1

6/14 5.6 MDSMON 5.6-1

Date ,Delivered

4/30

4/30

4/30

4/30

4/30

5/31

5/31

5/31

5/31

5/31

5/31

5/31

5/31

5/31

5/31

5/31

5/31

5/31

4/30

4/30

4/30

4/30

5/31

5/31

4/30

5/31

4/30

6/14

6/14

6/14

Table of Contents (Continued)

Page

6. Command Table Editor

6.1 MDCMNT 6.1-1

6,2 MDCMT 6; 2-1

6.3 MDCMTL 6.3-1

6.4 MDCMTS 6.4-1

6.5 MDVCMD 6.5-1

7. Control Table Editor

7.1 MDALST 7.1-1

7.2 MDCNT 7.2-1

7.3 MDCNTE 7.3 1

7.4 MDCNTS 7.4-1

7.5 MDCONT 7.5-1

7.6 MDDEFN 7.6-1

7.7 MDEDIT 7.7-I

7.8 MDSPEC 78-1

8. Utility Routi....

8.1 MDALCT 8.1-1

8.2 MDCTPK 8.2-1

8.3 MDGETC 8.3-1

8.4 MDLIST 8.4-1

8.5 MDLKUP 8.5-1

8.6 MDLSTH 8.6-1

8.7 MDLSTI 8.7-1

8.8 MDLSTO 8.8-1

8.9 MDLSTR 8,9-1

8.10 MDPUTC 8.10-1

8.11 MDQUIT 8.11-1

8.12 MDSMTW 8.12-1

8.13 MDSPLT 8.13-1

8.14 MDTOC 8.14-1

8.15 MDUTIL 8.15-1

8.16 SEARCH 8.16-1

8.17 SORT2 8.17-1

Table of Contents (Continued)

Date Delivered Page

9. Library Maintenance

5/31 9.1 DCTMOD 9.1-1

4/30 9.2 MDADDR 9.2-1

5/31 9.3 MOBULD 9.3-1

5/31 9.4 MDGENR 9.4-1

10. IMS Interface

5/31 10.1 1DIMS 10.1-1

11. -Access Control

5/31 11.1 MDLOGO 11.1-1

6/14 11.2 MDELAC 11.2-i

5/31 Appendix A - Cross Reference A-i

6/14 Appendix B - Common Blocks B-1

LEVEL II MDAS PROTOTYPE MONITOR

PROGRAM DOCUMENT

(PART II)

1. 	Introduction

The purpose of this document isto provide detailed information about

each subroutine contained in the monitor. This information is provided at
a level such that programers may become familiar with the design and

techniques used to implement each component described in Part I of this
document. However, flow charts are not provided for the extremely simple

routines. This document is not intended to describe the user interface and

should not be used as such. For this type of information see the "User's
Guide for the Level IIMission Design and Analysis Subsystem (MDAS) Prototype"

Inorder to facilitate the reading of the flow charts contained herein
the following convention was adopted for off page connectors. Each connector

will contain a letter and a number, separated by a slash. The letter

uniquely determines a destination and the number(s) refers to the page of
the flow chart where the referenced connector is located or-from where this

connector is referenced. For example, .. would indicate
the program flow is continued at connector A on page 2 of the flow chart.

On page 2 we might find (A/D,3)_... which indicates that this

portion of the routine may be entered from either page 1 or page 3 of the

flow.

This document describes the routines contained in the baseline program

as delivered to JSC/MAB on 28 December 1973 on the CSC INFONET system.

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

MDAS Resident

The resident is the only program logic which is continuously present in

memory during an MDAS session. It contains minimal logic to load and execute,

and if required, scan the required processors and reload and return control

to the submonitor.

Processing

Inputs All communications with the resident are via the intramonitor

communications area. There are three classes of information used for pro­
cessor loading 1) the library catalog, 2) processor calling sequence data,

and 3) scan control values, all of which are described in Appendix C.

In addition to these inputs, the resident accesses the library files (Part I,

Section 6) and reads the contents into the processor swap area as required.

Method The resident invokes the INFONET basic file services package LRS

(Logical Record-Services) which is system resident and thus external to the

MDAS region to perform all input/output functions. A major portion of the

resident code is directed toward manipulating the LRS file control blocks

(UCB's, unsanctioned control blocks, and OCB's, operations control blocks).

All communications with LRS is via these control blocks which must contain

such parameters as file name and'version, record length,.buffer origin and

length, access codes, file organization keys, etc.

The resident uses the catalog entry number to access the file name/version

and origin and length data for the processor to be executed. This information

is stored in the LRS control blocks, the file opened, and the input of the

instruction bank (record) of the processor started. While the record is

being loaded by LRS, the resident constructs the processor calling sequence if

any. (The submonitor, loaded in a similar fashion, has no calling sequence).

Tne absolute addresses of the calling arguments are computed by adding

the origin address of BLANK COMMON to the relative common address of the argu­

ments as returned by the submonitor. A transfer instruction to the post pro­

cessor execution logic is placed after the last argument address since this

is the point of return following processor execution.

1.1-1

After the instruction bank input is complete, the data bank (record) is

loaded and control is transferred to the processor. This sequence is repeated,

alternating between processor loading and submonitor loading unless the sub­

monitor indicates that a parametric scan of processor inputs is to be performed.

Scans are performed with a single processor loading as follows:

1) The processor inputs will have been defined by the submonitor such

that the scan centroid point will be evaluated on the initial

execution. The associated data box file will also have been opened

and identification records output to it.

2) The resident will copy-the complete summary table (name, units, and

summary vectors) to the data box file. Adjustment of the input

parameters to the (Xl, Y,) point will then be accomplished and the

processor re-executed.

3) Each subsequent return from the processor will be followed by

copying the summary vector to the data box file and the scan

parameters incremented such that the sequence (X2, Y1), (X3, Y1)

(Xn' Y1 , (X1, Y2) . (X,, Ym) iscompleted.

4) In order that all output quantities of the processor will be left
with values corresponding to the centroid point, the resident

deactivates the scan, closes the data box file, resets the scan

parameters to the centroid values, and executes the processor a

final time.

Normal MDAS termination is accomplished by the transfer of control to the

system directly from the submonitor.

Outputs Aside from fatal error messages the only outputs from the resi­

dent are the summary table contents of data box files and the deactivating of

the scan activation flag.

1.1-2

USAGE

THE MDAS RESIDENT IS ENTERED FROM THE BOOT LOGIC By THE FOLLOWING

SEQUQUENCE OF ASSEMBLY LANGUAGE OPERATIONS

STORE ASCII NAME OF FUNCTION TO BE LOADED IN PRONAM

LOAD REGISTER BID WITH PROTAB OFF SET MINUS ONE OF THE

FUNCTION I-BANK LENGTH AND ADDRESS WORD

JUMP TO LABEL INTIIN IN THE RESIDENT

EXTERNAL REFERENCES

ECLOSS TO'CLOSE FILES

ECTSOS TO OUTPUT TO TERMINAL

ELRSRS To READ LOGICAL RECORDS

ELRSWS TO WRITE LOGICAL RECORDS

EOPENS TO OPEN FILES

EROOLS To TERMINATE EXECUTION

EWAITS TO WAIT FOR ASYNCHRONUS READ COMPLETION

MDADDR FOR LIBRARY MAINTENANCE

MDSMON TO PERFORM MONITOR FUNCTIONS

SUBSYSTEM PROCESSORS AS REQUESTED By USER

DIAGNOSTICS

D B WRITE ERRORs ID IN Al

THE CURRENTLY ACTIVE DATA BOX FILE CAN NOT BE COMPLETED

BY WRITING OF SUMMARY VECTOR* THE SYSTEM RETURN CODE 15

CONTAINED IN REGISTER Al.

PROC 	READ ERROR, ID IN Al

THE REQUESTED PROCESSOR LOAD MODULE FILE CAN NOT BE

READ, THE SYSTEM RETURN CODE IS CONTAINED IN REGISTER

Al.

EXTERNAL STORAGE

THE LOAD MODULE FILES OF THE SUBMONITOR DESIGNATED PROCESSORS

AND THE SUBMONITOR ARE ACCESSED FOR READ AND CLOSED.

THE DATA BOX FILES OPENED AND INITIALIZED BY THE SUBMONITOR

ARE COMPLETED AND CLOSED.

BLANK COMMON

VARB I/O

ARGADD I
CENTX I
CENTY I
DBOCB I/O
DBUCB I
DBSVLN I
INITX
INITY

I
I

REpRODUC]BIfLT OF THV
NUMARG 1/0 ORGINAL PAGE IS POOR
N2X I
NZY I

PRONAM I
PRONUM I
PROTAB I
SCANF I/0

1.1-3

YARP

XINC
lNc

WORKX
WORKY

ip

I
I
1/0
1/0

LOCAL COMMON
NONE

Initialize access

method control

blocks for pro­cessor loading

caninusncutios

Initialize setup of

SAdd absolute bias 10 .. Insert "jump" to logic

to con argmetsad-te continuat on after last

for resse seten argument and finalize

call preparations

Store computed

address
 4atfrnnu
calling
 toequmpnet

Printr dirgnostis

messag
 Iessage

errr

Sto
 odify control

blocks for data

bank input "

osoroNo
Yes

.;t_ ExecuteI <> ~
scan fuJin r? aabn n

Resident Fl ow Diagram Page I of 2

REPRODUCIBILITY OF TII9
ORIGINAL PAGE IS POOR

utdA/2
on-

Call designated

processor with

ing sequence

Rtrig Ys Compute index Ouptsummary

fo?o entrynumber
umntrfrom catalog vector

Yees

scan cycle

Initial Hocomplete

excution ofces

ethis cnro

I ~~N Inrmntt
Setup~ca cyycloerl

and t vacomtplete

Initiactivat
accan

vctor
tbetunt

andlosetdaabo

Setuter cycl
centtrod

adset values o
 Nonreet

scan pointte
oinitial

pocnt Deatiat

Inrmn

I l~ em~ter

Resient
l iagrm Pge 2of

Set-of Inreen YOO OvaGlNA

Boot Logic (MDAS)

The purpose of the boot logic (entry point MDAS) is to perform sufficient,

one time initialization to bring the subsystem up for a user session. The

basic tasks involved are the input of the library catalog from mass storage

into the intramonitor communications area and the initializing of the resi­
dent/submonitor communications link such that transfer of control to the

resident will cause it to load and execute the appropriate monitor function,

Processing

Inputs The only input to the boot logic is the library catalog which resides

in mass storaqe file MDTABL.MD. This catalog and its associated header record

are loaded into the intramonitor communications-area (see Appendix C for

locations).

Method The boot logic invokes the INFONET basic file services package

LRS (Logical Record Services) which is system resident and thus external to

the MDAS region to perform all input/output functions. A major portion of

the code is directed toward manipulating the-LRS file control bl'ocks (UCB's,

unsanctioned control blocks, and OCB's, operations control blocks). All,

communications with LRS is via these control blocks which must contain such

parameters as file name and version, record length, buffer origin and length,

access codes, file organization keys, etc.

The catalog file is opened and the three word header record input.

These words containsize and pointer data to the remaining portions of the

catalog. (Table 2-1 depicts the general structure, content and definitions

of the catalog file MDTABL.MD.). From the header information the total

space required for reading the catalog into memory is computed and tested

against the size available.

The catalog used on the previous MDAS execution, referred to as the old

catalog record, is input followed by any new processor entries into the

catalog generated by the maintenance program MDGENR. As indicated in

Appendix C, the remaining portion of the intramonitor communications area

is reserved for an ephemeris data buffer and the storaqe monitor table (SMT);­

2.1-1

http:MDTABL.MD
http:MDTABL.MD

thus the boot logic sets the origin of the buffer to the next available

address following the catalog and the origin of the SMT folloving the fixed

length buffer.

After the catalog input and associated allocations are accomplished, the

boot logic primes the communications link to the resident to cause loading

of the appropriate monitor function. There are three possibilities.

If no changes have been made to the library and catalog the submonitor

(MDSMON) will be queued for loading. The necessary control block data is

found inwords two and three of the first catalog entry.

If MDGENR has modified the library and catalog the maintenance processor

(MDADDR) must be loaded to reorganize the catalog and build or modify the

default control tables for the affected processors. The necessary control

block data is found in words four and five of the first catalog entry pro­

vided that MDADDR itself has not been modified.

The third possibility for monitor function loading is the invoking of

a new version -of MDADDR. This is detected by the presence of a non-zero

value in the third word of the catalog header record. In such cases this

value is the record number of the new catalog entry record corresponding to

the revised MDADDR. To queue this function the associated control block data

in words two and three of the new entry are referenced.

Before transferring control to the resident, the adequacy of the swap

area region sizes is verified to insure proper loading of the queued

function by the resident.

Outputs The appropriate portions of the intramonitor communications

area are initialized as described and a monitor function is queued for loading

by the resident. Several diagnostics related to detection of fatal errors

may be output by the boot logic.

2.1-2

USAGE

ENTRY MDAS

EXECUTE THE GPS COMMAND !MDAS

EXTERNAL REFERENCES

MOAS 	RESIDENT

D.IAGNOSTICS

CATALOG SIZE *.o. TO LARGE FOR PROTAB o,.o

THE MDAS LIBR'ARY CATALOG FILE WILL NOT FIT IN THE

INTRAMONITOR COMMUNICATIONS AREA-AS PRESENTLY

CONFI.GURED. EDIT MDAS-PNC TO REVISE THE VALUE OF CRES

APPROPRILATELY AND REASSEMBLE AND LINK MDAS.

EXTENT OF o.e. (oooot,o) IS TOO LARGE FOR CURRENT MDAS

CONFIGURATION .,*,.**,)
THE INDICATED LOAD MODULE (MDSMON OR HDADOR) REQUIRES

A SWAP AREA LARGER THAN THE ALLOCATED REGIONS.

DETERMINE THE REQUIREMENTS. EDIT MDAS.PNC TO REVISE THE

VALUES OF IRES AND ORES APPROPRIATELY AND REASSEMBLE AND

LINK MDAS.

INIT 	READ ERROR, ID IN Al

THE BOOT 'LOGIC WAS UNABLE TO READ THE LIBRARY CATALQG

FILE MDTABL.MD. THE SYSTEM RETURN CODE IS CONTAINED IN

REGISTER Al.

EXTERNAL STORAGE

THE LIBRARY CATALOG FILE MDTABL.MD IS 'OPENED, ACCESSED FOR

READ AND CLOSED.

BLANK COMMON

IN ADDITION TO THE FOLLOWING VARIABLES, THE BoOT-LOGIC ITSELF

IS CONTAINED IN BLANK COMMON. IT CAUSES ITS OWN DESTRUCTION

TO OCCURE WHEN THE FIRST LOAD OF THE MONITOR IS ACCOMPLISHED

BY THE RESIDENT.

VARB I/O

DBSTRT 0

EPHLEN I

EPSTRT 0

FIXCOM I

NTRY 0

PRONAM 0

PROTAB 0

PTABKY 0

LOCAL COMMON

NONE

2.1-3

http:MDTABL.MD
http:MDTABL.MD

Initialize access Adjust control

method control blocks for new

entry records
blocks
 input

Open librarynercod

catalon file
and input­
header record

Input Yes

error

o Logcolog

Yes

Nompt Ength n

sa ceuinco mn ica-bocks
tionscor eaifory

InputF

errtopr fllwbfe

and esultngYes

Yes Closeesreod

Prn rrrN

ASCIIdiag- Boot FntinPg ClwompautategInuo rii of

nosi pREPRODUCIBIT OF THE

2.1-4ORIGINA PAGE-1IS POOR

areasein e

No oNwverionsz

S ti ter Detrianeostion Setpontett

pinterrortry

tlDSootL iFl zeDadeqate rResidentiiq ae Z o

Swap

+

-S-

INumber of Number of Entry #of Header Record
old entries new entries new MUADDR

1-bank length D-Lank length IIDADDR I-bank rIDADDR D-bank
Submonitor

and origin length & origin
name (MDSMON) and origin length & origin

Processor Processor
Processor Processor Processor

D-bank lengths default control revision
 names in 1-bank lengths

alphabetical and origins and origins table and argu- number

order
 ment definition
file lengths

Old Catalog Record

[Ne ocessori I-bank length - -bank lengthT)
name and origin and origin

MOADDR II-banklength f-bank length

and origin and origin

*00

New processor I-bank length D-bank length
name and origin and origin

New Catalog Entry Records

Table 2-1 Organization of the Library Catalog File MDTABL.MD

2.1-6

[" OF THE
ORIGINAL PAGE IS POOPR
REPRODUCIB]h

http:MDTABL.MD

MDBCDI - User Communication

MDBCDI converts a BCD number to a binary integer and entry point MDIBCD

converts a binary integer to a BCD number.

Method

Input:
 The inputs to MDBCDI are BCD numbers, one character per word to

be converted, and the number of characters to convert.
The inputs to entry

point MDIBCD are the binary integer and the number of words available in the

output array.

Processinq: Routine MDBCDI converts BCD numbers to a binary integer.

The BCD characters are input one character per word.
MDSQZB is called to

remove blanks from input string. MDBCDI checks each word for a digit (0 - 9).

If the word does not contain a digit, an error flag is set to the negative

of the subscript word number in
error and the routine returns. The input

number of words, i.e.,
BCD numbers, in the input array are converted to a

binary output integer and the routine returns. MDBCDI performs the same

function
as MDBCD2 except MDBCD2 does not allow intervening blanks in the

input character string.

Entry point MDIBCD converts a binary integer to a BCD number which is

returned one character per word in the output array. The number of words

left unfilled is output or if the number of digits exceed the available

words, the negative of that number is output.

Output: The output from MDBCDI are the binary integer and an error flag

if a digit or blank was not input in the BCD array. The outputs-from MDIBCD

are BCD numbers one character per word and the number of unfilled words or

the negative of the extra words needed.

3.1 1

USAGEENTRY
MDBCDI

CALL MOBCDI (NCOLINTN)

ARGMT I/O TYPE DIM DEFINITION

NCOL I I N ARRAY CONTAINING BCD NUMBERt

ONE CHARACTER PER WORD

INT 0 1 BINARY INTEGER
N 1/ 1 1 NUMBER oF BCD WORDS INPUT

IF A NON-DIGIT WAS INPUT IN ARRAY

NCOL, ON OUTPUT N WILL BE A NEGATIVE
VALUE WITH THE MAGNITUDE BEtNG THE

SUBSCRIPT OF THE INCORRECT ORD

ENTRY MOIBCD

CALL MOIBCD CNCOLINTN)

ARGMT 1/O TYPE DIM DEFINITION

NCOIL 0 r N ARRAY CONTAINING BCD NUMBERe

ONE CHARACTER PER WORD

INT I I I BINARY INTEGER-

N I/O I I NUMBER OF WORDS AVAILABLE Ib NCOL

ON OUTPUT IT IS THE NUMBER nF

UNFILLED WORDS OR THE NEGATtVE OF THE

NUMBER oF EXTRA WORDS NEEDEn IF NCOL

IS OVERFLOWED

EXTERNAL REFERENCES

MDSQZB

RESTRICTIONS

I* INPUT BCD ARRAY MUST CONTAIN ONLY- DIGITS OR BLANrS

2 .OUTPUT BCD ARRAY MUST BE LARGE ENOUGH TO CONTAIN BCO

NUMBERS

DIAGNOSTICS

NONE

EXTERNAL STORAGE

NONE'

BLANK COMMON

NONE

LOCAL COMMON

NONE

3.1-2

mSQZB

Remove blanks

fro BC o

Initialize output
binary number to zero

input BCD number array

Initialize index into array

containing Hollerith digits

the BCD No

number equal to

the Hollerith
digit?

Multiply the integer binary

number by 10, add the digit

and store as the new integer

binary number

No- Hv
Inreen ndex int

Haeal N Increment indexin

H l e i h i i sarray containing

been checked Hollerith digits

Set error flag (set the
input number of BCD numbers
to the negative values with

a magnitude being the sub­
script of the incorrect word)

R

MDBCDI Flow Diagram

3.1-3 OF TIM

OILGINAL ?AGE IS pOOR

__GP

Extract each digit beginning

with the least significant

to the most siqnificant

Place the corresponding

Hollerith value of each digit

in the outout array from the

-last position to the first

digits exist than

BCD words

Yes

Output the negative

value of the extra

words needed

- MDIBCD Flow Diagram

3.1-4

MDBCI2 - User Communication

MDBCI2 converts a BCD number to a binary integer

Method

Input: The inputs to MDBCI2 are BCD numbers one character per word to

be converted and the number of characters to convert

Processing: BCD characters ate input one character per word. MDBC12

checks each word for a digit (0 - 9). If the word does not contain a digiL,

an error flag is set to the negative of the index to the word in error

and the routine returns. The input number of words, i,e., BCD numbers in

the input array, are converted to a binary output integer and the routine

returns. MDBCI2 performs the same function as MDBCDI except MDBCDI allows

intervening blanks in the input BCD character string.

Output: The outputs from MDBCI2 are the binary integer and an error

flag if.a non-diqit was-input in the BCD array.

3.2-1

USAGE ENTRY MDBCI2

CALL MDBCI2 (NCOLINTN)

ARGHT I/O TyPE DIM DEFINITION

NCOL I I N ARRAY CONTAINING BCD NUMBERC

ONE CHARACTER PER WORD

INT 0 I I BINARY INTEGER

N 1i0 1 1 NUMBER oF BCD WORDS INPUT

IF A NON-DIGIT WAS INPUT IN ARRAY

NCOL, ON OUTPUT N WILL BE A NEGATIVE

VALUE WITH THE MAGNI-TUDE BE;NG THE

SUBSCRIPT OF THE INCORRECT ,ORD

EXTERNAL REFERENCES

NONE

RESTRICTIONS

Is INPUT BCD ARRAY MUST CONTAIN ONLY DIGITS O-9).

DIAGNOSTICS

NONE

EXTERNAL STORAGE

NONE

BLANK COMMON

NONE

LOCAL COMMON

NONE

3.2-2

MDBCI2

Initialize output binary­
number to zero

Initialize index into input

BCD number array

_I

Initial.ize index into array

containing Hollerith digits

th
 Increment index

nubreqa o ovealNo into array-con­

the Hollerith Holenith diit tamning Hollerith

Edigits

Multiply the integer binary

number by 10 and add the digit

and store as the new integer

binary number

Set error flag (set the
input number of BCD numbers

Increment index into No Have to the negative value with

IBCD number array
all the BCD
numbers been

a magnitude being the sub­
script of the incorrect word

checked

MDBCI2 Flow Diagram

3.2-3ORGPT - OF O3.2-3 ORIGIUAI PAGE spOOR

MDCDAT - User Communications

The purpose of MDCDAT is to interpret free field card input for input

data to the right of an equal sign.

Method

Input: Input to MDCDAT is through the calling seauence. It consists

of a buffer containing the user's response, the pointer to the character from

where processing is to begin, the number of characters in the buffer, and

the column number where the prompt ended.

Processino: MDCDAT processes data on the right side of an equal sign.

Integer, real, double precision, Hollerith or.octal data may be input. Values

that consist only of digits and prefix algebraic signs will be interpreted as

integer data. MDBCDI will be called to convert the BCD number to binary

integer before the value is stored in the output buffer. Numerical values

will be interpreted as real (single precision) data if they contain a decimal

point (.), an imbedded algebraic sign and/or the letter E. The presence of

an imbedded letter D in a numerical value denotes a double precision value.

Both single and double precision values will be processed with regards for

underflow and overflow. Octal values are composed of the digits 0 - 7

(maximum of 12 characters) prefixed by the letter 0. MDSOZB will be called to

remove blank character words before the octal characters are packed into one

computer word. Positive (+)and negative (-) signs will be processed for

numeric values and exponents. For each numeric type, the field designator

(see Appendix D), entry length and data will be stored in the output buffer.

Most other characters will be interpreted as Hollerith data. All data

enclosed by apostrophes, or by a leading apostrophe and column 73, will be

processed as Hollerith data. This data will be packed for output via calls

to MDPCK, and thus will be left justified containing six characters per word

with blank fill. The number of characters stored will be determined by the

number of columns between the delimiting apostrophes or, in the absence of

apostrophes, by the number of columns in the string beginning with the first

non-blank common and ending with the last non-blank column (imbedded blanks

are retained).

3.3-1

Special characters $ and % are recognized by MDCDAT and will have the

appropriate field designator set in the output buffer. A comma (,) is rec­

ognized as a field separator while an asterisk (*)-and a backslash (\) are

recognized as the end of statement. A left parenthesis (()is recognized as the

the start of a subscript. Subscripts may contain alpha or numeric characters

The "$LAST" feature is processed by MDCDAT; however, it is a design feature

only and will not be used operationally.

MDCDAT makes numerous error checks, and outputs error messages when an

error is encountered. An up arrow () will point to the character in error.

Listed below are examples illustrating typical data forms:

0 INT = 123 * (Integer)

* RVAL = 1.23E1, 45E-Ol * (Real)

* OVAL = 1.23D, 45D-01 * '(Double Precision)

BIT = 01234567 * (Octal)

* X(l) = 1.2, (2)3.4 * (Subscript)

e ABC = 3R 123 * (Repeat)

* HD = 'HOLLERITH DATA' (BCD String)

Output: The output from MCDATA consists of error messages, an output

buffer containing field designators and related data, a pointer to the end

of this buffer, and a flag indicating the status of its processing.

3.3-2

USAGE

* 	 RT-RY..tDcDAT _ _ _-_ _ _ _ _ _

CALL MDCOAT (ICOMINENDILENPPKRBFJSTATI

ARGMT 	 I/O TYPE DIM DEFINITION

ICOM I I VARB INPUT BUFFER CONTAINING NUMERIC
-- -- L.UIz-S-T- .vJw _ILCQN VZRTED -AND._PACKED

I I I I STARTING CHARACTER LOCATION OF DATA
........ . E aL. ._ uuBEa _G CHAR-CTRs_ 4_.cam-...

ILENP -I I 1 NUMBER oF CHARACTERS IN PROMPT
. .RBF-- VARB --OUTPUT- BUFFER. .

4 I II POINTS TO THE END'OF KRBF
- - - - --- STAT .. O .. i _. STA-T-US-.pLAG-FOR- MDCDAT PROCESSING .-.

OUNORMAL RETURN
........- NEGwERRoR .

... £XTERNAL-REEERENCES ... 	 _ __

MDBCDI

PO!CK

MDSQZB

DIAGNOSTICS

IPGGI LZ ALLOWED
ITS_IN AN OCTAL VALUE, MAXIMUM OF

NUMBER OF DIGITS FOR THE OCTAL VALUE EXCEEDED IZ
--_- LLLESA _UsE-OF CHARACTER t [N -OR AFTER. CfLUMN_,t.. - - ­..

THE CHARACTER NAMED WAS USED ILLEGALLY IN OR AFTER

IM.---LUM-.NUMBER. DE&LGNkLT-E-D

... E.XT-ELRNAL- STORAGf._.

NONE

BLANK COMMON

NONE

LOCAL COMMON

NONE

ftREODUIBILITY OF THE
QgyGQNAL PAGE IS POOR

3.3-3

MC DAT

/1.3,4,
8,9

No

chrctreqa

to

N

Yes Initialize pointers

and flags

Set
character

in

field designator
entto asls found in

output buffer

Genxt
harlterw

8/

No this the
last character

processed

Set field designator

to end of statement
in output buffer

I

HIDCDAT Flow Diagram Page 1 of 9

3.3-4

0/1.,2

Begin scan 	of field character by character

acharacter a C 	 currently being
inee,09processed

Charcte~r 	 ChCharac= Character= Character = Character ater

anegative
fo

REPRODUCIBIIY OP THEI]

Page 2 of S

MOCOAT Flow 	 Diagram (Continued)

3.3-5

"R"found-check for repeat group

the-first character in
scan, an argument name or

Call IDBCDI to convert

BCD to binary integer

Set field designator for

repeat group and store

data into output buffer

Page 3 of 9

HIDCDAT Flow Diagram (Continued)

3.3-6

G/2

"E"found-real

H1/2

"D"found-double precision

this the first
character in the scan,
an argument name or an

Yes
E/2

this the first
character in the scan,
an argument name or an

Yes
E/2

Set field designator

for real

No No

Set field designator

for double precision

Get exponent sign and

iNo
pick up exponent

Call MDBCDI to convert BCD

characters to binary integer

Process exponent accountinq for
underflow and overflow. Set
field designator and store data
in output buffer

Page 4 of 9

MDCDAT Flow Diagram (Continued)

3.3-7

1/2,9

"0' - octal

~Error message

A eY s"DIGITS IN AN

Call MIDSQZB to moveS

blanks out of value Seterror flag

Set field designator Error message

to octal and store"ILGLUEO

data into output buffer

1IDCDAT Flow Diagram (Continued) Page 5 of 9

3.3-8

L/ 6

" found

Is a Ye

Pocess subscript

Call MBCDI to

convert the BCD

subscript to

/
integer

Print up arrow

!id F o under charactersubscript i r o

Yes

it' ". Yes ,Process

this an %$LAST" "&LAST"
- suscript subscript

Set field designator

and store data for

subscript

M4DCDAT Flow Diagram (Continued) Page 6 of 9

.3.3-9,

RIPRODUCIBILT OF THE}
4RTW1tNkG PAGE IS POOR

M/2,

Process symbols

Is, i

Set field designator

to name

Set field desiqnator
Ifor "I"or "%" in

output buffer

Call IDSOZB and

tIDPCK to remove

blanks and pack

data

Store data in'

output bufferi

Page 7 of 9

MDCDAT Flow Diagram (Continued)

3.3-10

0/2

II found

Pick up BCD

characters

between

apostrophes

pchract 9esN/

Store field designator

and data in output buffer

MDCDAT Flow Diagram (Continued) Page 8 of 9

3.3-11

P/2

Last character processed

Hollerit h o Yes M/bing processed

period being-"/

S Octal Yes

vert BCD to integer

Set field desiqnator

to integer and store

data in output buffer

Page 9 of 9

MDCDAT Flow Diagram (Continued)

3.3-12

REPRODUCWBhIT OF THE

ORIGINAL PAGE IS POOR

MDCONV - User Communications

MDCONV converts a BCD character string to an ASCII character string.

Method

Input: The inputs to MDCONV are the BCD buffer, the number of characters

in that buffer to be converted, and the position in the output buffer to begin

to place the converted characters.

Processing: MDCONV determines the starting bit of the output buffer to store

the ASCII character and initializes the starting bit of the BCD buffer to zero.

For each character to be converted, MDCONV determines the word number of the

character in the BCD buffer and the word number to place the converted charac­

ter in the ASCII buffer. An index into an array containing ASCII code is com­

puted by extracting six bits from the BCD buffer starting at the specified

bit. The nine bit ASCII character is placed in the ASCII buffer. The bit

location of ASCII is incremented by 9 and the bit location of the BCD buffer

is incremented by 6. After all characters have been converted, MDCONV returns.

Output: The output from MDCONV is a buffer containing the ASCII charac­
ters. This buffer is not affected other than the ASCII character string has

been inserted.

3.4-1

USAGE

ENTRY HDCONV.

CALL MDCONY (NtBCDBuFICHARASCBUF)

ARGMT 1/0 Ty.PE DIM DEFINITION

N I I I NUMBER oF CHARACTERS TO BE CONVERTED
ScOBUF I I VARB BUFFER CONTAINING THE BCD CwARACTERS
ICHAR I I CHARACTER POSITION IN ASCII BUFFER TO

BEGIN OUTPUT STRING
ASCBUF 0 1 VARB ASCII BUFFER CONTAINING THE OUTPUT

CHARACTER STRING (NOTE: ACSmUF IS NOT

AFFECTED OTHER THAN THE INS.RTED
STRING)

EXTERNAL REFERENCES

NONE

DIAGNOSTICS

NONE

EXTERNAL STORAGE

NONE

BLANK COMMON

NONE

LOCAL COMMON

NONE

3.4-2

MDCONV

Set the starting bit

in the BCD buffer and

the ASCII buffer

Determine word number

in BCD buffer and ASCII

buffer for this character

Determine index into array

of ASCII character corres­
ponding to the BCD character

Store ASCII character

into output buffer

Increment bit location in

BCD buffer and the ASCII

buffer

MDCONV Flow Diagram

RPRODUIBILIT OF THE

ORIGINAL PAGE IS POOR

3.4-3

MDPCK - User Communication

MDPCK packs characters from a single character pet word array into a

six character per word array.

Method

Input: The inputs to MDPCK are the number of'characters to pack and

the array containing the characters to be packed.

Processing: MDPCK determines the number of words needed to pack the

input characters. MDPCK then loops storing six characters at a time into

the output array. During the store, the first bit of the first character

in the six character set is removed before the store and then returned after

the store. This is done to prevent overflow during packing. If the-last

word is not filled with input characters, the remaining characters in the

output word will be blanks.

Output: The outputs from MDPCK are the array containing the packed

characters and the number of words in that array.

3.52I

SAGE­
'ENTRY MOPCK

CALL MDPCK (NCAROSoLWORD,'N)

bEFINITION
ARGMT 1/0 TyPE DIM

NCARDS I I VARB ARRAY CONTAINING ONE
WORD

CHARACTEN rLR

LWORD 0 I VARB ARRAY CONTAINING PACKED 'CHACACTERS

(S'IX CHARACTERS PER "W.ORD-)

'N -I/O I 1 oN INPUT N IS THE NUHBER OF SINGLE

CHARACTERS DI-MENSION OF N.ARDS)

ON OUTPuT N IS THE NUMBER O WORDS

OF PACKED CHARACTERS (SIX CUARACTERS
PER WORD)

EXTERNAL REFERENCES

NONE

DIAGNOSTICS

NONE

EXTERNAL STORAGE

NONE

BLANK COMMON'

NONE

LOCAL COMMON

NONE

RfEPRODUCIBILTY OF THE
ORIGINAL PAGE IS POOR

3.5-2

NDPCK

I s

IIb

Determine the number of nacked

words needed for input characters

I ~ inbt fgrofrs charpcte wor
For
each set of

xcharacters
 I

word

output
th eYes into Set up to fill remaining

k ter
aac
tc pah
I d ? blanks iwo

I
I~~

I
II
I i I I

I Reunsinbt sgbt rmoen reure

prevent overflow during packinq)

I Store packed word in output array

Set number ofw arsinou pard

tIDPCK Flow Diagram

3.5-3

MDPRMH - User Communications

The purpose of MDPRMH is to prompt the user with the variable name and

associated Hollerith values, and to return the response.

Method

Input: The input to MDPRMH consists of a Hollerith variable name and

associated Hollerith values input through the calling sequence.

Processing: The variable name and values are stored in the buffer

passed to MDPRMT (which prompts the user for a response). If the number

of computer words exceeds the print line, then MDPRMH will print all lines

except the last line which will be printed by MDPRMT as the prompt for the

user's response.

Output: The output is a buffer containing the user's response and the

status of this output.

3.6­

USAGE

ENTRY MDPRMH

CALL MOPRMH (NAMEARRAYLENBUrFSTAT)

ARGMT

NAME

ARRAY

LEN

BUFF

STAT

1/0 TYPE DIM

I H I
I H VARB

I I I

0 I VARS

0 1 1

EXTERNAL REFERENCES

MDPRMT

DIAGNOSTICS

NONE

EXTERNAL STORAGE

NONE

BLANK COMMON

VARB

NONE

LOCAL COMMON

VARB

NONE

I/O

1/0 TYPE DIM

DEFINITION

ITEM CONTAINS THE VARIABLE NAE

ARRAY CONTAINS HOLLERITH VALUES

ASSOCIATED WITH NAME

NUMBER OF WORDS CONTAINING ARRAY

DATA

BUFFER CONTAINING USER RESPONSE-

UNITS-INTERNAL
BCD

STATUS FLAG FOR MOPRMH PROCESSING

DEFINITION
LOC. RELADO

REPRODUCIBILITY OF TH

OETGINAL PAGEIS POOR

3.6-2

MDPRMI - User -Communications

The purpose of MDPRMI is to prompt the user with the variable name and

associated integer values, and to return the response.

Method

Input: The input to muvrli consists or a Hollerith variable name and

associated integer values input through the calling sequence.

Processing: MDPRMI prompts the user for a response, via MDPRMT, to the

requested input integer values. If the number of values exceeds one print

line, MDPRMI prints all lines except the last one, which is sent to MDPRMT as

the prompt.

Output: The output is a buffer containing theuser's response and

the status of this output.

3.7-1

USAGE

ENTRY MDPRMI

CALL MDPRHI (NAME.ARRAYLEN,BUFFISTAT)

ARGMT 1/O TYPE DIM DEFINITION

NAME I H I ITEM CONTAINS THE VARIABLE NAME

ARRAY I I VARB ARRAY CONTAINS INTEGER VALUES

ASSOCIATED WITH NAME

.LEN I I I NUMBER OF WORDS CONTAINING ARRAY

DATA

BUFF 0
 1 VARB BUFFER CONTAINING USER RESPONSE

UNITS-INTERNAL BCD

STAT 0 1 1 STATUS FLAG FOR MDPRMI PROCESSING

EXTERNAL REFERENCES

MDPRMT

DIAGNOSTICS

NONE

EXTERNAL STORAGE

NONE

BLANK COMMON

VARB

NONE'

LOCAL COMMON

VARB

NONE

i/0

I/0 TYPE DIM LOC RELADO DEFINITION

R'EPRODUCIBILITY OF THE
ORT(CJAL PAGE IS POOR

3.7-2

MDPRMR.-'User Communications

The purpose of MDPRMR is to prompt the user with the variable name and

associated real values, and to return the response.

Method

Input: The input to MDPRMR consists of a Hollerith variable name and

associated real values input through the calling sequence.

Processing: If there is less than one print line of real values

associated with the variable name input to MDPRHR, MDPRNT is called with these

values to prompt the user for a response. If one line is exceeded, MDPRMR

prints the Hollerith name and all the values other than the igast one which

is.passed to MDPRMT as the prompt forthe user's response.

Output: The output is a buffer containing the user's response and

the status of this output.

3.8-1

USAGE

ENTRY MDPRMR

C-ALL MDPRMR (NAMEARRAYLENBUFFISTAT)

ARGMT I/O TYPE DIM

NAME I H I

ARRAY I R VARB

LEN I I I

BUFF 0 1 VARB

STAT 0 1 £

EXTERNAL REFERENCES

MDPRMT

DIAGNOSTICS

NONE

EXTERNAL STORAGE

NONE

BLANK COMMON

VARB IO

NONE

LOCAL COMMON

VARB I/O TYPE DIM

NONE

DEFINITION

ITEM CONTAINS THE VARIABLE NAME

ARRAY CONTAINS REAL VALUES ASSOCIATED

WITH NAME

NUMBER OF WORDS CONTAINING ARRAY

DATA

BUFFER CONTAINING USER RESPONSE

UNITS-INTERNAL BCD

STATUS-FLAG FOR MDPRMR PROCESSING

LOC REL-ADD DEFINITION

REPRODUCIBIITY OF THE
dRIGINAL PAGE IS POOR

3.8-2

MDPRMT - User Communications

The purpose of MDPRMT is to provide the submonitor prompting capability.

Method

Input: The input to MDPRMT consists of a field data character stri'ng,

number of characters in the string and a flag specifying the scan type.

Processing: MDPRMT converts the internal BCD characters to ASC II via

MDCONV, adds an end mark and a null character, and-prints this data as the

-prompt for the user. The response is read and interpreted to internal BCD

via MDSCAN. If an up arrow "' was input, the routine will prompt with "+'

until some other response is input before returning to the caller.

Output: The output is a buffer containing the format of each field

encountered in the one line text input by the caller.

3.9-1

_ _ _ _ _ _ _ _ _ _ _

USAGE

ENTRY MDPRMT

CALL MDPRHT (PRMTLEQUFLGINPUTSTATUS)

ARGMT 1/0 TYPE DIM DEFINIT'ION
PRMT I I VAaB FiELD nATA C -

L I I I NUMBER OF CHARACTERS IN PRMT
SEQUF LL I - I C-L-S-G LLAG
INPUT 0 I VARB- DECODED INPUT LINE (DECODED BY

STATUS 0 1 I STATUS FLAG FOR MDPSMT PROCESSING

EXTERNAL REFERENCES

MDCONV

MDSCAN

DIAGNOSTICS

r
ABOVE INPUT LINE HAq ILLGAI rHARAC-FR ApjrA r CORRF T AND

REINPU.T

AN III-rG.AL CHARACTER WAS Fr'2ND WHEN II CHARACTER

STRING WAS SCANNED

EXTERNAL STORAGE

NONE

RIANK CnMMnN

rOMMON /MDCODE/A

APOST 0

ASTRSK 0

AT 0

ACKqiH n

COLON 0

COMMA n

DBLE 0

OnLLAR 0

EOS 0

__ _ __-FQUiLS n _ _ _ _ _ _ _ _ _

HOLL 0

TNTE n

LBSIGN 0

LPAR n

MINUS 0

NAME n

OCTAL 0

pECRmT -n

PLUS 0

REAL 0

RPAR 0

REPEAT 0
SLASH 0

SUBS, 0

'pAhw n

REPRODUOTBTITY OF 'M
ORMWAL PAGE IS POOR

3.9-2

http:III-rG.AL

LOCAL rOMMON

NONE"

3.9-3

TDRM

/ CoNv
Convert BCD string

to ASCII and add end

marker to string

(2calls)

Irite the

message

Ecode response, con­

ertto BCD, place in

alling
routines buffer

Indicate to calling
routine user entered
+. Change prompt
buffer to prompt user
with + so he may enter
the directive to be

performed.

REPRODUCIBILITY OF THE

MDPRIIT Flow Diagram

3.9-4

MDSCAN - User Communications

The purpose of MDSCAN is to scan each field of the text line and output

an encoded buffer. This buffer contains information relating each field

encountered in the text via a numerical code followed by the data values.

Method

In2u: The input to MDSCAN consists of a buffer (inBCD),number of

characters in the buffer, a flag specifying the scan type, and a flag con­

taining the number of characters contained in the prompt. This data is

input through the calling sequence.

Processing: MDSCAN translates the input text line into fields for the

output buffer. Values on the right side of an "="sign are interpreted and

packed into the output buffer by MDCDAT. Numeric values not following an

equal sign are converted via MDBCI2 to binary integer. MDPCK is called to

pack binary integers or alpha characters (whichever processing is occurring)

into a character string to be stored by MDSCAN in the output buffer.

For subscript values, numeric subscripts are first converted to binary

integer via MDBCI2 before MDPCK is called to pack these digits. Since

alphabetic characters do not require this conversion, MDPCK is called immed­

iately. The packed characters are then stored by MDSCAN into the output

buffer. Subscripts for more than one dimensional array will also be processed.

If the subscript request was for "&LAST", special processing will occur.

The handling of "&LAST" is a design feature and will not be considered in

detail because it will not be used operationally.

When MDSCAN builds the output buffer, the field designator, and entry

length and data (if applicable) are stored in the output buffer for each

field encountered. For definition of the field designators, refer to the

appendix. If an error occurred during processing, the status flag is set

to the character found to be in error. If no errors were encountered, the

status is set to 0.

Output: The output from MDSCAN consists of a buffer containing the

field designator and, if applicable, the entry length and data for each field

in the input text line (see Appendix for details). Also output is the

status of MDSCAN's processing. These oarameters are output through the calling

sequence.
 3.10-1

USAGE

ENTRY MDSCAN

CALL MDSCAN (INPUTNtEQUFLGPRTLENIBUFFSTAT)

ARGMT I/O tYPE DIM 	 DEFINITION

INPUT I I VARB UPON ENTRY INPUT CONTAINS A ONE LINE

TEXT

N I I I UPON ENTRY N CONTAINS THE NUMBER

OF CHARACTERS IN INPUT

EQUFLG I I I 	 UPON ENTRY EQUFLG IF \ 0 MEANS AN

EQUAL SIGN HAS BEEN PROMPTED AND A

LITERAL STRING MAY FOLLOW. OTHERWISE

INPUT Is A LITERAL LIST

PRTLEN I I I
 UPON ENTRY PRTLEN CONTAINS THE NUMBER

OF- CHARACTERS IN THE PROMPT

BUFF 0 1 VARB ENCODED BUFFER CONTAINING THE FIELD'

DESCRIPTOR AND DATA FOR EACH FIELD

IN THE TEXT LINE

STAT 0 1 1 STATUS oF THE OU*TPUT.

OSNoRMAL RETURN

-LS "uGIVES THE COLUMN NUMBER OF

THE ERROR

EXTERNAL REFERENCES

MDBCI2

MDCDAT

MDPCK

DIAGNOSTICS
NONE

EXTERNAL STORAGE

NON E... -....

BLANK COMMON . .-

NONE-

LOCALNMHO --­

3.10-2

-Hs Yes Are Nothse Ye

beepropedal charactersca ctr t" /

HO YeseN

character
all

islan__

charcterbeecYesrla

No

Iottsf Yag Istis

sDtca

chPage an lr

-thisMDCA alo haatrCiq

No.10-3

. ale

G/2 Yes

Call MDBCI2 to convert

subscript value tos
binary inteqer/

value numeric

?

SPack to BCD character

"a'

e-.qual to'MST

convert sub­
script for "&LAST"

Move chara cters [

to output buffer C/)

- into output hSte
buffer
 enOfsbcip /

Get the next

portion of
the subscript

let

Do.nter to /

thiERRORe-

character
Sin errorG/

MDSCActeowDarm(ntiu)Flin

Page 2 of 2

MDSCAN Flow Diagram (Continued)

3.10-4

MDSOZB - User Communications

The purpose of MDSQZB is to removeimbedded blanks in a character string.

Method

Input: The inputs to MDSQZB are a string of characters with imbedded

blanks to be removed and the number of characters in that string to search

for blanks.

Processing: MDSQZB examines the specified number of characters in the

input string beginning with the first character. When a non-blank character

is encountered, it is stored in the output string. If the input number of

characters to examine is negative, blanks within a Hollerith string will

remain.

Output: The outputs from MDSQZB are a character string with no imbedded

blanks and the number of non-blank characters.

3.11-1

ISAGE
ENTRY MDSQZB

CALL MDSQZB i'NCOLSN)

ARGMT /0 TYPE DIM DEFINITION

N,COL 1I0 I N ON INPUT NCOL IS AN ARRAY O CHAR-

ACTERS IN WHICH BLANK ARE Tn ,BE

REMOVED.
ON OUTPUT NCOL IS AN ARRAY coNTAINI'NG

THE PACKED CHARACTERS.

N I/0 I I ON
IN

INPUT N I5 THE NUMBER OF COLUMNS'

INPUT ARRAY TO SEARCH FOo BLANKS.

IF NEGATIVE. BLANKS WILL NOT BE

REMOVED WITHIN HOLLERITH CHaRACTERS

I.Eo BETWEEN APOSTROPHES.
ON OUTPUT N IS THE NUMBER Or NON-

BLANKS CHARACTERS IN NCOL.

EXTERNAL REFERENCES
NONE

DIAGNOSTICS
NONE

EXTERNAL STORAGE
NONE

BLANK COMMON

NONE

LOCAL COMMON
NONE

3. 11-2

int DoenthsuN

Nto Is it the
frtapostrophe o

~aset of two/

NoI

output array

Store column in

output array

Incremen
inde
 remaisn-he

Yes

outputarrayinq columns

Set number of non-

REPRODUCIBILITY OF TID

ORIGINA.L PAGE IS POOR

MDSOZB Flow Diaoram

MDELET - Storace Monitor

MDELET deletes an entry from the storage monitor table (SMT)

Method

Input: The inputs to MDELET are the label of the desired storage monitor

entry to be deleted-and the entry type if a search for type is to be made.

Processina: MDELET locates the entry in the storage monitor table

corresponding to the input label and flags it for deletion. The required

storage is not released, however and the data base is not automatically

packed by MDELET. If MDELET could not find the label of the SMT entry, a

flag is set to indicate that the entry was not flagged for deletion,

Output: The outputs from MDELET are a flag indicating whether the SMT

entry was found and deleted or not. If the SMT was deleted, the sort, pack,

and deactivate flags are output to indicate deletion of the entry.

4.1-1

;SAGE

ENTRY MDELET

CALL MDELET (LABELiTYPEINOFIND)

DEFINITION
ARGMT 1/0 TYPE DIM

LABEL
T-YPE

I
I

I
I

I LABEL OF THE DESIRED sMT ENTRY

ENTRY TYPE - IF'NEGATIVE NO SEARCH

FOR TYPE IS MADE

NOFIND 0 1 1 ENTRY FIND FLAG
.a ENTRY WAs FOUND AND DELETED

at ENTRY WAS NOT FOUND

EXTERNAL REFERENCES

MOFINO

DIAGNOSTICS

NONE

EXTERNAL STORAGE

-NONE

BLANK COMMON

VARB 1/0

SORTFG 0

PACK
 0

LOCAL COMMON

NONE

4.1-2

MDEE o a

SMT entry

Yes

Set the flags

for deletion

Ith' No Turn on bit to indicate

residentRAD not packed

Turn on bit to indicate

core not packed

ORlGINAkL PAGE IS POOR

MDELET Flow Diagram

4.1-3

MDENTR - Storage Monitor

rIDENTR is used by the MDAS monitor to allocate storage for the storage

moni.tor table (SMT).

Method

Input: Description (type, label, length and column dimension) of the SMT

entry to allocate and a flaa indicating storage device (memory or RAD) are

input along with current addresses and flag of the present SMT.

Processina: MDENTR builds an entry in the storage monitor table and

allocates storage for the data either in core or on an external 'storage device.

The SMT is a part of blank common area beginning at DBSTRT (a blank conon

variable). For a definition of an SMT entry see Section 5.3.

The core resident data is allocated from the bottom of blank common

backwards toward the SMT. If storage is not available either in the SMT or

the data area, the data base is packed in order to squeeze out the deleted­

entries. If storage is still not available-an error flag is output, a,

message is printed and the routine returns. When an entry is placed in the

SMT and storage is allocated, the sort flags are set to indicate that the SMT

is not sorted.

The algorithm for MDENTR is depicted in the functional flow diagram.

Output: Th address and size of the data allocation and addresses and

flags associated with the new SMT are output along with an output flag.

4.2-1

USAGE

ENTRY HDENTR.

CALL MDENTR (TYPELABEL.SIZE.IDIMADDROEvICE.ERRORI

ARGMT I/0 TyPE DIM DEFINITION

TYPE I I I ENTRY TYPE FLAG

LABEL I I I ENTRY LABEL

SIZE I I I LENGTH OF ENTRY

IDIM I I I COLUMN DIMENSION OF ENTRY
ADDR 0 I 1 ADDRESS OF DATA ALLOCATION

FOR CORE RESIDENT DATA ADDRrSS IS
GIVEN RELATIVE BLANK COMMON
FOR DATA RESIDING ON EXTERNAL STORAGE

ADDRESS IS THE NEGATIVE ADDRESS
DEVICE I I DEVICE INDICATOR

-0 ALLOCATE CORE STORAGE
ml ALLOCATE EXTERNAL STORAGr

ERROR 0 I ERROR RETURN FLAG

sO NO ERROR
ml STORAGE MONITOR TABLE IS FULL

=2 CORE STORAGE EXCEEDED

=3 EXTERNAL STORAGE EXCEEDEn

EXTERNAL REFERENCES

MDPACK

DIAGNOSTICS

**STORAGt REQUIREMENTS EXCEEDED

THE STORAGE REQUIRED EITHER FOR CORE OR EXTERNAL DEVICES

IS GREATER THAN THAT AVAILABLE

EXTERNAL STORAGE

NONE

BLANK COMMON

VARB I/0

DBADOR I/O

ExADOR I/O

EXMAX I

NTRY j/O

PACK I

SORTFG 0

LOCAL COMMON

NONE REPRODUCIBILITY OF THE

ORIGINAL PAGE ISPOOR

4.2-2

core
is
storag
TYes

No

Nos Is data4N
base inpacked

Yes

Write error message
STORAGE REQUIREMENTS
EXCEEDED

-

IIUMPACK
PaSqeet

RETURN

B/2

Set ades

daacret
storage

availablefm

Set

Dore

errorfa

*n
iagram

Peete1nt

Setades Set error

Set up SMT with
label address and
size of entry

G

pe

SWrite error mess age

STORGE REUIREtENTS
EXCEEDED RTR

MDENTR Flow Diagram

Page I of 2

4.2-3

B/I

external storage base in packked Pack theailbl for data base/

pointers flag to 3

Write error message

STORAGE REQUIREMENTS

EXCEEDED

CRETURN

MDENTR Flow-Diagram (Continued) Page 2 of 2

4.2-4

MDFIND - Storage Monitor

MDFIND is used to locate an entry in the storage monitor table (SMT).

Method

Input: The inputs to MDFIND are the label and type of the desired SMT

entry. If no search is to be made on type, that input will be negative.

Processing: SORT1 is called to do an alphabetic sort on labels in

the SMT and, if desired, to sort on type also. This sort is done only if

the SMT is not already sorted in the above way. The SMT is then seardhed

for the input name and type, if type was input. If the entry in the

SfT was found, the output flag is set to one and the routine returns. The

size of data, entry type of SMT, address of the data and the address of the SMI

entry are output along with the output flag set to zero. The routine then

returns to the calling routine.

Output: The outputs from MDFIND are the entry type, the size and address

of the data and the address of the SMT entry. A flag is also output to

indicate whether the desired entry was found or not.

4.3-1

JSAGE

ENTRY MDFIND

CALL MDFIND (LABELTYPESIZEADDRNNOFIND)

ARGMT I/0 TyPE DIM

LABEL I I I
TYPE I/O 1 1

SIZE 0 1 1

ADDR 0 I 1

N 0 1 I

NOFIND 0 I 1

EXTERNAL REFERENCES

SORTI

SEARCH

DIAGNOSTICS

NONE

EXTERNAL STORAGE

NONE

BLANK COMMON

VARB [/0

DBSTRT I

NTRY I

sORTFG I

LOCAL COMMON

NONE

DEFINITION

LABEL OF THE DESIRED sMT ENTRY

oN INPUT TYPE IS THE ENTRY TyPE* IF

IS MADE.
NEGATIVE NO SEARCH FOR TYPE

ON OUTPUT TYPE
IS THE ENTRY TYPE FROM

THE SMT

SIZE OF DATA - IF NEGATIVEs DATA

RESIDES ON EXTERNAL STORALE DEVICE

ADDRESS OF DATA - IF DATA Ic CORE
BLANK
RESIDENT ADDR IS RELATIVE Tm

DATA RESIDES ON rXTERNAL
COMMON. IF

STORAGE DEVICE, THE NEGATIVr ADDRESS

IS RETURNED

ADDRESS OF THE SMT ENTRY REi ATIVE To

BLANK COMMON

FIND FLAG

.0 DESIRED ENTRY WAS FOUND ;N THE SMT

a1 ENTRY WAS NOT FOUND IN TwE SMT

REPRODUC]BILITY OF THE.

ORIGINAL PAGE IS POOR

4.3-2

SMDFIND

I Set flaq for alphabetic
sort and searchon name

Set up to search

on name only

No>N

Set up to search on

name and type

(Sot Mon nme)

Sfalready oreIs
teYes

pro~rperly

SORT1
Sort SMT on name

lr

MDFIND Flow Diagram

Page 1 of 2

4.3-3

yo -Stooeidfa

Output thesize of

data, entry type of

SMT, address of data

and address of the
SMT entry

Set4 find flag to zerooRETURN

!DFIND Flow Diagram (Continued) Page 2 of 2

4.3-4

MDGET - Storage Monitor

MDGET retrieves data from the storage monitor table (SMT) and stores

the data in an output buffer.

Method

Input: The inputs to MDGET are the name and entry,type of the SMT entry

where the data resides. The Ith and Jth location within the name to begin

the retrieval must be input along with the maximum size of the output buffer.

Processing: The SMT is searched to find the proper entry in the SMT.

If the entry was not found the status flag is set to -1 and the routine returns.

The displacement within the data as specified on input and the size of the

data is calculated. If the size of the data is not the same as the maximum,

the status flag is set to 1 and the routine continues. If the calculated

size of the data is greater than the input maximum size, the output size is set

to the maximum size. If the data is in memory, the data is moved into the output

buffer and the routine returns. If the data is to be on RAD, MDRADI is called

to store the data on RAD. If an error occurred on the RAD store, the status

flag is set to -3 and the routine returns. (Currently an attempt to store

data on RAD will result in a termination of execution.)

Output: A buffer containing the desired data is output from MDGET

along with the SMT entry type, number of words in the buffer and a status

flag.

4.4-1

'SAGE
ENTRY MDGET

CALL MDGET (NAMEtTYPEIDISSJDISMAX.BUFFSIZESTATUq)

ARGMT

NAME

TYPE

lots

JDIs

MAX

BUFF

SIZE

STATUS

/ 0TyPE DIM

I I I

I/0 I 1

I I I

I I I

I I I

0 SIZE

0 1 I

0 1 1

EXTERNAL REFERENCES

MDFIND

MDRADI

DIAGNOSTICS

NONE

EXTERNAL STORAGE

NONE

BLANK COMMON

NONE

COMMON
LOCAL

NONE

DEFINITION

THE SMT DIRECTORY
BE FOUND IN
NAME TO

TY1 E TO BE
IS THE sMT

ON INPUT TYPE

IF NFGATIVE
IN SMT SEARCH.
MATCHED

NOT COMPARED
TYPE IS

S FOUND
THE TYPE

ON OUTPUT TYPE IS

THE sMT ENTRY

I-DIMEM SION OF

IN

DISPLACEMENT FOR THE

NAME

DISPLACEMENT FOR THE j-DIMEmSION
OF

NAME

SIZE OF OUTPUT BUFF R

MAXIMUM

DATA FRoM NAME(IDIS.JDIS)

WORDS MOVED
INTO '+66

NUMBER oF

STATUS FLAG

I NUMBER OF WORDS TRANSFEpED WAS
 *

NOT EQUAL TO MAX

a 0 DATA TRANSFERED OK

-1I NAME WAS NOT FOUND

TO READ
IN ATTEMP;
ERROR OCCURED
-3

DATA FROM RAD

OR DUCIBOLTy OF TH4.42 pAGE IS POORORIGINAT

4.4-2

indsIe nam daSts tu

t e S T e t yflag to 1

o S e statusi

+ 2 Was_

Computeldff

andie ofdataRA

th ieo o Set status

of thmaxflag to -I

Yes

MD E e DiG

into bufer.Crrentl

MDPACK - Storage Monitor

MDPACK removes deleted entries from the storage monitor table (SMT)

and packs the data area.

Method

.Input: The storage monitor table with the entries to be removed flagged

for deletion and the SMT accounting information are input to MDPACK along

with the device (memory or RAD) to pack.

Processing: 'For a memory pack MDPACK locates the entries flagged for

deletion in the SMfT, set the deletion flag (TYPE = -1) to a large number, and

shifts the remaining data base squeezing out the data for the deleted entry.

The address-portion of the SMT is updated simultaneously. Packing of theSMT

is accomplished by sorting the SMT by type, i.e., moving the deletions to

the bottom and resetting the number of SMT entries.

The mechanism of the above procedure is to check each entry in the SMT

from the last-entry to the first. Each entry is noted as to whether or not

the entry is to be deleted. The data base is squeezed after there has been

detected a deleted entry after a non-deleted entry, excluding the first

deleted entry. The data base is alsd squeezed after all entries are checked,

if it needs to be. The PHAZ-flag keeps a record of the entries. The definition

of PHAZ is

= 0 no deleted entries found yet

= 2 last entry was deleted

= 3 last'entry was not deleted

= 4 end of SMT, last entry not deleted and the final data base

squeeze has not occurred

For a RADopack, MDPACK returns.

Output: The storage monitor table with'the deleted entries removed

and the packed data area are output from MDPACk.

4.5-1

ISAGE
ENTRY MDPACK

CALL MOPACK (DEVICE)

ARGT I/0 TYPE DIM DEFINITION

DEVICE I i DEVICE TO BE PURGED ALONG WiTH THE
SMT

wO PACK USER CORE
.1 PACK USER DATA ON EXTERNAL STORAGE

DEVICE

EXTERNAL REFERENCES

SORTI

DIAGNOSTI[CS
NONE

EXTERNAL STORAGE
NONE

BLANK COMMON

VARB 1/0

DBSTRT I

NTRY I
PACK 0

SORTFG 1/0
DBADDR 0

LOCAL COMMON
NONE

4.5-2

;MDPACK
51ff sorted on

address fieldSSort S1f

to correlate core storage

_[et pack
fa

indicate

toto

RAD packed

<

I nitialize SilT index

to last entry

Decrement SLIT index
to the entry before

the last one

(Is this 0)anentry
dAound (PiZ

O GDiagramIIDPACK Flow
Page 1 of 3

453

B/I

No deleted entry found
yet (PHAZ = 0) What was

the last entry

Last entry not
deleted (PHAZ = 3)

Iths No
F L st entry deleted(PHAZ = 2) Iths Yes

Set -HAZ
flgto 2Yes

etry tolargedeleted Fl g

IstisHStPHAZ"

e Suyb
(am tinud P

Flag d2ee r n Nt o-eee

et pe to large numbe etr

?.5-

HIDPACK Flow Diagram (Continued) Page 2 of 3

4.5-4

SSet PEIAZ

flag to 2

FLag deleted entry ansettype tolrge numbetD/"I

rYes

Sort packed

SIIT on type

fir st entryf or

Set core pack flag

to indicate core packed

Set new address of

first entry of core

resident data

Set new address of

the next available

SHE entry

MDPACK Flow Diagram (Continued) Page 3 of 3

4.5-5

MDPUT - Storage Monitor

MDPUT puts data into the storage monitor table (SMT).

Method

Input: A description of the SMT entry of where to place the data is input.

The data along with a flag to indicate where the data is to be placed (memory

or RAD) is also input.

Processing: The SMT is searched for the proper entry. If an entry was

found for the data name and the data in the SMT does not have the same attributes

as the input data (i.e., resides on the same device and has the same length)

the entry in the SMT is deleted. If an entry was not found or was deleted,

storage will be allocated in the SMT for that entry. If an error occurs in

the allocation, the status flag is set to -1 and the routine returns.

If the device to place the data is memory, the data is moved into memory,

the status flag set to 0 and the routine returns. If the device is external

storage, MDRARO is called to store the data on RAD. Df an error occurs in

the RAD store, the status flag is set to -3. MDPUT then returns to the calling

routine.

Outnut: Data is placed in the SMT with a new entry in the SMT if one

did not exist for the desired data name. A status flag is also output indicat­

ing if an error had occurred.

4.6-1

.USAGE

ENTRY MDPUT

CALL MDPUT (NAMEtTYPEILENGTHIOMiBUFFgoDEVSTATUS)

ARGMT. I/o TypE

NAME I

TYPE I
LENGTH I
IDIM I
BUFF I

DEV -I

STATUS 0

I

I

I

I

I

1

EXTERNAL REFERENCES

MDFIND

MDELET

MDENTR

MDRADO

DIAGNOSTICS

NONE

EXTERNAL STORAGE

NONE

BLANK COMMON

NONE

LOCAL COMMON

NONE

DIM

I

I

I

LENGTH

1

1

DEFINITION

NAME oF THE SMT ENTRY IN WHtCH TO PUT

THE.DATA

DATA TYPE FLAG

SIZE OF THE SMT ENTRY

COLUMN DIMENSION oF ENTRY

DATA BUFFER

MEMORY/RAD FLAG

sO MEMORY

al RAO

STATUS FLAG

a 0 	OK

COULD NOT ENTER SMI ENIpY
*-I

3-3 RAD WRITE FAILED

S1PnODUCIBIT OF"THZ

ORTINAL PAGE IS POOR

4.6-2

r m FIND
Search for name
and type in SMT

the entry founA/

in the SMT

Yes

Does the
 No

dain theS

memory o Dram

lenge
the - Yeofs

B/i1
llns Set statu

11lf a o a t

rage a tU n ETiu
flag to -r
successful

destination of dataSoedt46Is noStsau
tbemmory

Y2
SMT memory flag to0 Pthe of

MDR 0RETURN

Store data into RAD

currently an error

with occur /

Noes A pAOj)UOIBIL1TY "OF THE
n

gpIG-N" PAGE IS POOR

flag to -3

MDPUT Flow Diagram (Continued)

Page 2 of 24.6-4

MDRADI - Storage Monitor

MDRADI, when developed and implemented, will retrieve data from the

RAD (random access device) portion of the SMT and place it into the pro­
vided memory buffer. MDRADI is the mechanism for acquiring particular

data elements which are in the RAD portion of the SMT, whereas MDROLL is

the mechanism for transferring data between the memory and RAD portions of

the SMT.

4.7-1

MDROLL - Storage Monitor

MDROLL's purpose is to bring into memory all data required by a processor

for execution and, if necessary, will roll data not required onto RAD. However,

currently the RAD is not defined therefore MDROLL does not perform the above

function but exists to provide the interface. -Currently MDROLL only determines

if enough memory is available.

Method

Input: The number of data words required by a processor to execute is

input toJMDROLL.

Processinq: When the number of words available is less than the words

required for execution, additional code must be implemented to place data on

RAD. This code will determine what is necessary to remain in memory, determine

the hierarchy of data to go to RAD and will write this data on RAD. The logic

of the current MDROLL is shown in the figure with a comment where the proposed

code should be inserted.

Output: A status flag indicating the availability of memory is output.

The proposed output will be data on RAD that will not fit into memory.,

4.8-1

USAGE

ENTRY MDROLL

CALL MDROLL (NWORDSSTATUS)

ARGMT I/O TyPE DIM DEFINI-TION

NWORDS I I I NUMBER oF WORDS IN SMT REQUiRED

STATUS U I ! STATUS FLAG

- 0 NUMpER OF WORDS AVAILABIE I'S

GREATER THAN THAT REQUIPED

u-I NUMRER OF WORDS AVAILABI E IS

LESS THAN THAT REQUIRED

EXTERNAL REFERENCES

HDPACK

DIAGNOSTICS

MEMORY REQUIRMENTS EXCEEDED

-,*o,,,,,, WORDS REQUIRED ****.*ee.: ,,J RVALAO6I

NUMBER OF WORDS REQUIRED IS GREATER THAN THAT

AVAILABLE, sTATUS FLAG WILL BE SET TO -I.

EXTERNAL STORAGE

NONE

BLANK COMMON

VARS I/O

DBADDR I

NTRY I

LOCAL COMMON

NONE

4.8-2

Proposed code to

be inserted here--

DROLL

St satusTfla

MDPACK >

Pack user core

Pack RAD

Determine words

available

retrnRETURN

_ No

S Set status

flag to -I

orJfl4 equalto words
,I

!I-)ODUCM'Mff OF T

MDROLL Flow Diagram

4.8-3

MDALOC - Execution Controller

MDALOC establishes the input and output arguments' linkages for a pro­

cessor, allocates storage for all output parameters, and communicates para­

meters scan control data to the resident.

Method

Input: The control table, in the working buffer, contains the argument

specifications and data input to MDALOC.

Processing: MDALOC is entered from MDSMON for each command to establish

the argument linkage. MDALOC's function is to allocate storage for output

variables, to determine argument addresses of input and output variables

and to initialize -scan values.

The control table containing the argument specification is passed to

MDALOC-through a working buffer in comon. If the control table is incomplete,

the status flag is set to -1 and MDALOC returns; otherwise, the control

table is packed before proceeding.

Before the allocation of storage for output variables can be performed,

MDALOC must determine the amount of memory not yet allocated in order to

decide if the total amount of memory will be more than the available memory.

This is accomplished by first initializing a memory counter to the known

memory which includes the memory needed for immediate data (=). Each argument

is examined. If the argument is immediate data, no memory is added to the

memory counter. If the argument data is indirect (@), memory will be added

to the memory counter, ignored or an error will occur depending on the argument's

input/output. For output arguments the memory counter will be incremented by

the size of the data. If an SMT entry already exists for this name, the type

of the output array to be created and the SMT type that exists must be the

same and the size of the SMT entry must be larger than the array to be created

or the old SMT entry will be deleted. If input arguments are not immediate

data or in IMS, an error will occur.-' In no case will memory be added to the

counter for an input argument. After all arguments are checked MDROLL is

called to determine if enough memory is available and if not to roll part of

data to RAO (not implemented). The new control table is then placed in the

SMT with the name &CONTB and with a type of 1000. A detailed description of

above is depicted on pages I - 5 of the flow chart.

5.1-1

The allocation of storage for output arguments and the setting of the

argument address are shown inthe flow chart on pages 5 7. For each
-

argument the address within the data base that contains the data is cal­
culated and the address is placed inblank common (variable name ARGADD

dimensioned 30). If an argument is not found in the SMT with the same name

and type, MDENTR iscalled to allocate storage and to build an SMT entry

for that argument. If an argument isincomplete and is not a scan variable,

the completion flag for the entire control table is set to incomplete,

an error message is printed, and MDALOC returns. The argument data

address for immediate data issimply the relative address within the

control table plus the address of the control table. For indirect data, the

address is calculated by determining the amount of memory left in the control

table and subtracting that from the next available cell inmemory after the

control table. The addresses of the scan variables are set to B(36) and B(41)

inblank common.

The scan initialization performed by MDALOC is shown in pages 8 10
-

of the flow chart. Ifthe scan is activated, the preamble table of the data

box is set up. The definition of the table follows:

format flag number of dependent variables in summary vector

name of X variable name of Y variable

units of X variable units of Y variable

X centroid of scan Y centroid of scan

X step size Y step size

number of steps to be number of steps to be

taken on each side of taken on each side of

X centroid Y centroid

If any of the two scan arguments is incomplete, the values for that argument

are zeroed. The scan variables within the intramonitor communication data

area are also set. The preamble table is output to RAD and the file opened.

The argument text definition text is then output to the same file. Currently

the argument text definitions are blank. The data box is now initialized

and ready to accept data.

5.1-2

Output: The addresses of argument data are placed in blank common and

the control table from the working buffer is placed in the SMT with the

name &CONTB and type of 1000. If a scan is activated for this processor,

the scan values are placed in blank common and the preamble to the data box

is output to RAD.

5.1-3

AGE
ENTRYMDALOC

CALL MDALOC (STATUS)

ARGMT 1/O TYPE DIM DEFINITION

STATUS 0 1 1 STATUS FLAG

...... --STATUS OK

-1 CONTROL TABLE INCOMPLETE

...... -N-T-ROL -TABLE DATA NOT FOUND
-*2-

"3 UNyEFINED INPUT ARGUMENT
a -D-AA-.S ON RAD/NOT IMPLEMENTED
-5 ERROR IN MDENTR
"4-ERROR IN MOPuT

-7 ERROR IN SCAN DATA

........... ..- BERROR IN--MOPUTC

-9 I/o ARG. OF INSUFFICIENT SIZE

EXTERNAL REFERENCES
MDCTPK ..-...

MDSPEC
__J DLKUE-.... - " ,

MDF IND
MDIMSI
MDELET
MOROLL -.

MDPUT
. .--NDENT-R - ---------. . .

MDCNTS
-- - -- MDPUTC---- -- --..............-- -- - -- -- - --­

-- D-_AGNOS_ IC-_.

***.et ETYPE 3 DELETED.

- HLS-ARGUMENT--IS-OUTPUT .DATA--1T8AT- IS-NOT .IMMEDLATE-.AND

THE TYPES DO NOT MATCH THEREFORE THE OLD SMT ENTRY IS

DELETED.

***ERROR ENCOUNTERD WHILE PREPARING FOR

__-PROCESSOR-EXECUT-ION.........

STATUS FLAG HAS BEEN SET TO A NEGATIVE NUMBER.

--- SEF IE HE_..tAG. I-BLE--aRQR--.....
EAIN.LaTaN--04_ SD

. .E .F.RNAL _5 ORAGE
THE PREAMBLE AND THE ARGUMENT DEFINITION TEXT OF THE

--- D LT-A B X-- -OUTR T TO RA-Do-.

&__LA&N __K-_CD tIKL
VARB I/O

ARGAD 0
. - -- -ARGADO - 0 - --. -. . -

DBSVLN 0
... .---- o OnUOIBIh0l-OF THENUKARG IU

SCANF 0 E IS POOR
-SCNVAL O-.._ --___ _P .
VERSON I

. 5.1-4

COMMON /MDBUFF/

VARS I10

BDATA
 I

WBUF I/0

Isnth e Ye-= 	 Set tatu s

to -/1,2345

Write message
li;DCTPK

ERROR ENICOUNTERED

Pack control W
DHILE PREPARING FOR I

table data [PROCESSOR EXECUTION]

o Ia r ume n ts Al l 1

of memory needed for

the control table

and the argument

number to I

specification

Wht ImmediateH

EeuinTime (@)

MDALOC Flow Diaqram

Page I of 10

5.1-6

B/I

MDLKUP

Determine location
of argument data

a gu

u

'dWsN Set status

to -2

SIIT by name

SeSsetT
in

C/3Retrieve output Ills
entry\SLTdata and generate an/

Page 2 of 10

MDALC Flow Diagram (Continued)

5.1-7

T oF foIi-ERODUC
PO-3
to
inJNAL PAGE

ifHo

Is lo 1-rite message that

data entry deleted
nputdata

? in SlfT

IYes @_I

j Delete data

MDALOC nted 3 of I
low Diaram {C ing

Finddaa
5.n
1-'

resident to -4

No
G/2,3

bycre

Increment memory counter

by szef dta lus 4

(SLr entry words)

H/1 ,2

t ear g u m e n t s b e en fcr e c oe n t a r g u - I
mentcote
processed.

MDELET

Delete old SIT >
entry for &CONTB

Determine if enough

memory isavailable.
to RAn if/\ Roll data

/
\ ecessary (not /
\ implemented).

Nou~Was

IDALOC Flow Diagram (Continued)

Pae 4 of

5.1-9

hPROBUOBGI OF EM1
OINThVX PAGE IS POOR

10

andeptrmt in ST
withes data//

an ntiape

anterrri to 6

Setgstant

Yesi

HFIN

IInitializ scan

counter t

K/7O 	 lwDaga Cniud)Pg fI

Is Yes

Set data address to an

address in the resident/

submonitor interface data

area. For the first scan

point, the data address

is B(3G); for the second

B(41).

S/5

?IDLKUP
Look up relative

address of data in

-workinq buffer

Determine the true data

address by adding the

relative address within

the working buffer to

the address of the
control table

Whts mediate(=m

G IExecution time(

/ DFIN0
Find data address

for argument

MDALOC Flow Diagram (Continued) Page 6 of 10

5.1-11

and
fo /7data
neeg te
to

Determine si

data address
prcessedntcune

/S

Place address in

address array.
The subscript of

the array corres­
ponds to the argu-

Sment number

Yes

TIDALOC Flow Diagram (Continued)

Pane 7 of 10

5.1-12

Initialize number of

incrementdtion of the

two scan points to zero

- Is lie
the scan Q/10
activated

Yes

Set format flag and

the number of dependent

variables into a pre­
amble table for the

data box

argument
~Initialize

Inrmnt argu-

AntC F D a o ea f

o Blank and zero outntvariables

completetable for this argument

thisargu in preamble

Find location of

argument data

Wa Y_ Set status

MDALOC Flow Diagram Continued) Page 8 of 10

5.1-13

1IDCNTS
Find argument number

to be scanned

t t bSaetssittatus

SSet the arqument address

forthat argument number
 can variable and B(41)

for the second

Set data base item

DBSVL1 to the number

of dependent variables

in the summary vector

SSet data base item

B(36) - B(45) to scan

variables for this

arqument

Set preamble table

for this argument

to scan values

IDALOC Flow Diagram Continued)

.1-14
Pae 9 of 10

REPRODUCIBT1Y OF THE

ORIGINAL PAGE IS POOR

tIDPUTC

Outout the preamble
table to RD and
open file

IDPUTC
Output the argument

definition text to

same file as above
(currently blanks

are output)

an error in Set statusi

MDPUTC to -8

Set statusI

to 0

OALOC Flow Diagram (Continued)

5.1-15 Page 10 of 10

MDCMTG - Execution Controller

rIDCMTG brings the command table into memory (SMT) and places the

requested command into the intramonitor communications area of blank common.

Method

Input: The majority of the input is contained in blank common and is:

the command table name, the command table type, the command number to be

executed next and the number of the last command to be executed. The call­

ing sequence contains a flag indicating if this is the first execution of

MDCMTG for this command table. If it is,the command to be executed next

and the last command are sequence numbers which are converted to command

numbers.

Processing: The command table is brought into the memory portion of

the SAT, if necessary. If this is the initial execution, the range of

commands is checked for legality, and, if valid, converted to command num­

bers and stored in common. If an error exists in the request (i.e., bad

sequence number) control is returned to MDSMON with an indication of this

occurrance. An error message is also printed.

In each execution, the command number to be executed is compared to the

last number to be executed and the last number is compared to the total

number-of commands in the table. If either comparison shows that the limits

have been exceeded, an error message is output and control is returned to

MDSMON with a status indicating such. If neither limit is exceeded, the

command is broken into its characteristic parts and placed in common.

Output A status indication is passed through the calling sequence.

All other output is placed in blank common and is: a print flag, a temporary

edit existence flag, the control table type, the control table name, the

processor name and the sequence number of the command to be executed.

5.2-1

USAGE

ENTRY MDCMTG

CALL MDCMTG (STATUS)

ARGMT I/O TYPE DIM

STATUS I/O I 1

EXTERNAL REFERENCES

MDCMT,S

MOFIND

DIAGNOSTICS

DEFINITION

UPON ENTRYSTAT US INDICATES IF THIS

IS THE INITIAL ENTRY: uoINITIAL

ENTRY, =INOT INITIAL ENTRY. UPON

COMPLETION OF EXECUTIONiSTATUS

INDICATES THE VALIDITY OF THE INPUT:

=OINPUT GOOD: =ISYNTAX ERROR IN

INPUT.

**eNON-EXISTANT SEQUENCE NUMBER

THE USER HAS SPECIFIED A SEQUENCE NUMBER TO EXECUTE

WHICH DOES NOT EXIST.

EXTERNAL STORAGE

NONE

BLANK COMMON

VARB l/0

CMDNO 1/0

CMTNAM I

CMTYP I

CTNAME -O

CTYPE 0

DIRECT I

EDIT 0

ENDNO 1/0

ENTRY I

PNAME 0

PRINT 0

SEQNO 0

LOCAL COMMON

NONE

5.2-2

MDCMTG

MOFIND

Find the
address of

the command
table

YeseN

MDCMTS
Obtainnumber commandof start­
ing sequence
number

Obtain command
number of endino

sequence number

LeglOutout
 error

nubrmessaqe

Comns No Output error

legalmessaqe

command -_ -_ I
 ETR

executed in comonI

DCMTf Flot, Diaqram

5.2-3 REPRODUOIBIIT OP TIM

ORIGINAL PAGE YS POOR

MDCMTV - Execution Controller

MDCMTV is used to interpret and verify the directive given for SEMI,

AUTO or AUTO* mode.

Method

Input: The only input to MDCMTV is a buffer containing the directive

after processing by the user communications component.

Processing: After verifying the syntax of the directive, the command

table type and name are extracted from the directive and placed in blank

common. If the user has specified a range of commands to execute, the

beginning and ending sequence numbers of this range are placed in
common

and control returned to MDSMON. If a range is not specified'; zeros are

placed in common in place of sequence numbers.

Output: A status flag indicating the validity of the directive is

passed through the calling sequence. All other output is in blank common

and is:
 the command table type, the command table name, the sequence num­
ber of the first command to be executed (or zero if not input) and the

sequence number of the last command to be executed (or zero if not input).

5.3-1

USAGE

ENTRY MDCMTV

CALL MDCMTV(INPUTSTATUS)

ARGMT I/O TYPE DIM DEFINITION

INPUT

STATUS

I I

a0

VARB

1

BUFFER CONTAINING THE DIRECTIVE GIVEN

FOR THE SEMIAUTO OR AUTOS MODE.
FLAG SHOWING PRESENCE OF A SYNTAX

ERROR IF IT IS. NONZERO.

EXTERNAL REFERENCES

NONE

DIAGNOSTICS

000 SYNTAX ERROR

THE USER MADE A SYNTAX ERROR WHEN HE ENTERED THE

DIRECTIVE,

EXTERNAL STORAGE

NONE

BLANK COMMON

VARB I/O

CHDNO 0

CMTNAM 0

CMTYP 0

DIRECT I

ENDNO 0

COMMON / MDCODE /

VARS 1/0

ASTRIC I

COMMA I

DOLLAR I

EOS I

INTGR I

MINUS I

NAME I

PERCNT I

UPARRW

LOCAL COMMON

NONE

5.3-2

Sad No Otu ro

syntaxpSntaxnae se-CT
OK mesfor name7

a

g

i

Yes o

F

Determine MDCMTVndescoat I

ad
in comnec
a lepre an pae

iComm n d oUe&MT

table name foaramam

given3

MDMERG - Execution Controller

MDMERG, when developed and implemented, will locate any applicable

temporary edits within the command table being executed and modify the

control table accordingly before the particular command is executed. The

accompanying flowchart is a functional representation of MDMERG's task.

5.4-1

HDFIND

Find the
command
table

Find the temporary
edits and determine
size of edits

Wilteeis N Oetermine available

fit inu thedspace and move that
space fW.Bmany edits to W.B.

the edits toP O IMove O
the W.B., place flaos
in specs - delete
from data

Pack the table
to remove
redundancies

Split the
table

Determine if control I
table is coplete andI

mark accordinqly

dDMERG Flow Diagram

Z5.4-2

MDPRT - Execution Controller

MDPRT, when developed and implemented, will print the control table

variables at execution time which have been designated to be printed. The

feature of the control level syntax is used to designate execution time
**

printing of a control'table variable. Input variables are printed before

processor execution and output variables are printed after processor

execution.

5.5-1

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

MDSMON - Submonitor/Execution Controller

MDSMON is the main subroutine to the submonitor/execution controller

component. This routine is used to assist the user in constructing and

executing a simulation. MDSMON's execution controller function isto receive

user inputs regarding the commands to be executed, call the control table

editor to complete the control table if necessary, and call MDALOC to

establish the proper linkages for all arguments input to and output from

each processor executed.

Method

Input: The inputs to MDSMON are obtained from the user. The user is

prompted for directives and in the MANUAL mode comands are input, in the

SEMI mode the user is prompted to verify or to change the command. In the

AUTO mode there is no user interaction unless an incomplete control table is

encountered.

Processing: MDSMON is entered from the MDAS resident to control the

execution of a simulation. On the initial entry into MDSMON the user is

prompted for an access code and whether or not to initialize the data area.

The user is then prompted with an up arrow for a directive. Valid directives

are:

USAGE
COPY

Gives elapsed time of MDAS session
Not operational

QUIT Terminates session

EDCMT Edits command table

Utility
directives

EDCNT
TOC

Edits control table
Lists table of contents of the information
elements in user data area

DELETE Deletes data area in SMT

DUMP Lists contents of an information element

SAVE

RECALL

SEMI

Save data area (SMT)
Recall saved data area (SMT)

Executes commands in command table but allows
user to alter commands before execution

Execution
directives

AUTO

MANUAL

Comnands in cormiand table are executed without
any user interaction
Execution controller prompts user Tor each command

AUTO* Same as AUTO but commands are printed as
are executed.

they

5.6-1

For each utility directive, MDSMON calls a subroutine to. perform the

designated function and then returns for another directive (except inthe

case of QUIT).

The execution directives are processed within MDSMON. When one of

these modes is entered, MDSMON processes a command and returns to the

resident for execution. When MDSMCN is reentered, the mode remains in

effect until all commands are processed and executed at which time the user

isprompted for a new directive.

In the manual execution mode, MDSMON prompts the user for each command

to be executed. The end of the execution sequence is determined when the

user responds with an +' or fails to enter a new command (i.e., presses

carriage return in response to the command prompt '#). In the manual mode

MDSMON will verify and interpret the syntax of each command entered.

In the automatic and semi-automatic execution modes the name of-a

command table is input and MDSMON will retrieve this information element

from the storage monitor table (SMT). Once the comand table has been stored

inthe working command table (&CMDTB), its commands are processed sequentially

Each command to be executed is extracted from &CMDTB using an index stored

in non-volatile memory.
An optional field of the SEMI and AUTO directives

allows the user to specify the range of commands or the beginning command in

the execution sequence. The sequence number input in that field determines

the initial value of the command table index.

In the automatic execution mode the processors specified in each of the

commands are executed with no user interaction unless an incomplete control

table is encountered. An option on the AUTO directive has MDSMON indicate

its progress by printing each command as it is executed.

Inthe semi-automatic execution mode the controller prompts the user

with the sequence number, processor name and control table name of each

command. Inresponse to this prompt, the user has five options:

1. 	Carriage return, giving concurrence to execute the command.

2. 	"# nnn", ditecting the execution controller to a different command
in the table (nnn is its sequence number).

5.6-2

3. 	"#", indicating that a manual override command is to be input in

place of the prompted command.

4. 	 "\", indicating that temporary edits are to be made to the con­

trol table before executing this command.

5. 	 "t", the SEMI mode is to be aborted and control returned to the

directive level.

In each of the execution modes, MDSMON checks the control table specified

in each command for completeness and for consistency with the current version
of the processor to be executed. A revision number isretained in the pro­

cessor catalog (PROTAB) for each processor and updated only when the processor

interface changes. This revision number is also placed into each control

table when it is created.

If an incomplete control table is found MDSMON calls the control table

editor (entry MIEDCN) for the purpose of interacting with the user to complete

this table. Inthe MANUAL and SEMI modes a syntax mechanism ("\" following

the command) exists for directing the execution controller to call MDEDCN

even if the control table is complete.

For each processor to be executed MDSMON must also establish the input

and output arguments' linkages. This is accomplished by calling MDALOC

which also sets up the parametric scan control data. If the processor is

a utility, MDALOC will not be entered. The utility processor will be called

instead and will set up its own input and output argument linkage. Currently

only one utility processor exists, MDALCT, which performs the ALOCAT command

(allocates an array).

Output: The output from MDSMON isdependent on the input directive. If

the directive isother than SEMI, AUTO or MANUAL, the designated function is

performed. IfMDSMON is in the SEMI, AUTO or MANUAL mode, the control table

isedited if it is incomplete or is specified on input for edition. The

argument linkage is established for the processor before returning to the

resident for execution of the command.

5.6-3

SAGE

- ChlIii Y.AID _O N __ _-____ ______QS

CALL MDSMON

EXTERNAL REFERENCES

...M Lfl O

MDPRMT

MDCMT

MOUTIL
.MDSULT _.

MOVCMD
---------sEARCH ..

MDGETC
MarFT
MDSPLT

...MDMER G . ~.... . - - -- - - -.- __

MDFIND
m. CmT ,,_-... ... - - "_

MOTOC

MDCMTG

-OCHXT.S.- .. - .

MDEDCN

MDCONV

DIAGNOSTICS

UR.DEf-LSOAI RZC-T1 V-E-- ___________________

RESPONSE TO UP ARROW WAS NOT LEGAL*
.----- U - BL--A _DE.-W-E-D--jaEC T IV F
PROCESSOR NAME .**,o* NOT FOUND

PROCrSS OLNCMTE-NOLF-UGD-----T-H--RO-

CONTROL TABLE NAME NOT FOUND
COuTROI T APB E hME NO T FOD IN THE CONT4RL--T-ABL

a" REVISION NO. OF *.....(..) DOES NOT MATCH
RgV tS-t0&Nn-anE CONT-ROL-T-AB-LE o-.t- - -_ __

THE REVISION NUMBER IN THE CONTROL TABLE DID NOT

MATCH THE R--FOR-TH-P-ESSOR 4-INEVI--4IUM-N
T,*-

PROCESSOR CATALOG

-. 01
 - Al RESPONSE -_______ _________

IN THE SEMI-AUTOMATIC MODE, AN ERROR OCCURED IN THE
PRnM TTNG R THE JSE.Rs FIST INPIT W-A-_NO-r__A'_O-U _ .

BACKLASH OR A CARRIAGE RETURN.
FYTE-NT..-0 _*p- :. g**. 1 I TOO LARGE F-R
CURRENT MOAS CONFIGURATION (*qms***e*,**),

CURRENT pRO cSnoR WiLL--NO-4-H --- -ttRE44-NA4NG--......
PORTION OF MEMORY

ERROR OCCURED IN ROUTINE MDALCT

------4 -I--R-R-O-R-WH-i+LE-.RRGKEuP--- ---- -- -

ERROR OCCURED IN ROUTINE MDPRMT

5.6-4 RERODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

EXTERNAL STORAGE

.BLtNK COMMON...
VARB I/O

CMDNO I/O
CMTNAM..I
CMTYP
CTNAME

CTYPE
DIRECT

DBANK

ED IT --

ENDNO

--- ENTRY....
IBA'NK

I
0 ...

0
0
I
I ..
I

._I/

I

..-.. . PNAME _ 0 -..

PRI-NT 0
... . . PRONAM 0 . .

PRONUM 0

..... . T AB -1-

PTASKY I
-.- SEQNO- 0

...- COMMON-/MDBUFF/

VARS 1/0

BDATA 0
. ... DS IZ E -0-.--

MDLEN 0

COMtONL.2CODEI_
VARB I/O

ASTRK I

I- -$&SH

EOL I

VITGR I

NAME I

QSTION I

LOCAL COMMON

NnN5

.

.

.

...

.

..

.

5.6-5

access code	 number
Prompt user for

eeue
Prompt user

INITIALIZE DATA
rlDSlrTRAREA? 	 (Yes/go)A/Ye

dt
S~~~Maua an1iita/z

Errort Yes Wtero

in prFmlo Diag
N
nameallfile~

Answer No

Read previously output

S1IT
and Initialize data/

base. 	 User prompt for
file name

IIDS iN 	Flow Diagram Page I of 9

5.6-6

Prompt an up arrow
for new di

1/3, No

Wasrepnse a
name

NO Was res­ponse a questionB/
mark

OBEY

Perfom USAGEYs I

directeI 6ives 6Write message

entire session "NIROTV

response a defined

COPY DUllAV RECALL

MOSMON Flow Diagran

65B-7
Page 2 of 9

fRO0DUCIO IT OF Tfi
ORIGIN PAGE IS POOR

DELETE

C/2 D12E/2

DUMtPor TOC
QUITCOPY directive
directive directive

HDQUIT

Urap Up NOAS
sessiondirective

Perform utility
(copy

not implemented)

NOTIMTOC

List table of
contents of the
Information
elements in the
user data area

T B/2

F/2 G2H/2

EDCMT
directive

SAVEor
=EAL=directive

EDCNT

?IDCHT

Conmand table
editor

Move input values

into array for use
in reading or writinqgdio

MIDCNT

Control table

Yes Has user
already been prompted

with up arrow

SAVE What
i

directive

RECALL as ser
led enpope

with up arrow

Yes

1/2

8/2

ie

eiInoiptprmtuser

r M ie

ilenminput, prompt user B/2

/

JIDSMON Flow Diagram Page 3 of 9

5.5-8

J/2.5

SEMI,
AUTO

o rAUTO­t'directive

MDCMTV

MDCMTV

Interpret input

directive

Yes
Did
anoerror 8/2
ccur

K11.5

MDCMTG

Put comniand table

in memory (only on
initial call) and

find requested

command

Yes
Did

a% error B/2

ccur

No

AUTO or

,Wlat
, the
 ANTO*"de
mod

SEMI

MDPPJlT

Prompt user
with

the canmand

1/2
a+4

Up arrow
returned What is

the status of
prompt

Error Write error message
ILLEGAL RESPONSE

No Error

L/5

Flow Diagram14DSMON Page 4 of 9

5.6-9

-R-V-RODTJC11B]'1Ty OF Tllj
PAGE IS 1)OOR

LA4

Wha

t ewas

Sresponse

Manual Others Temporary Command O.K.
override edits (carriage return)

Set flag indicatinq
Weth temporary edits are

to be made to con­
?# trol table

Blanks Comrand Others
number d

Find command

table addressr

omn
Baerine

Page 5 of 9IDSION Flow Diagram

5.6-10

N/I ,2,6,
6. 7

tANUAL
directive

XDPRKiT

Wht Up arrow .rror

9 return

tNon

response wit e

1IDVCMD
conmandInterpret

lorma1l

was theMstatus

:encountered

Set flaq to

indicate temporary1

1ISO oDicontrol edits agaPg.6o_

FlowIIDSMON Diagram Page 6 of 9

5.6-11

http:agaPg.6o

/4

SEARCH

Search processor
catalog for pro­
cessor name

Ws No 	 Write message

ntae not found

control table grGietbe used the controltable from RD

No

HDGET
there an N

Set control
error

table , , .SIl

tere a that control

errotable not found

he revision-number for th r c ss r
th ame as the revision

number for the

N rite message
qivng revisionnumbr

control table

Page 7 of 9
IDS MN F lo w Di a gr 	am

5.6-12

RFPRODUCIBILITY OF THK

ORIGINAL PAGE IS POOR

Split the control table

with the argument speci­
fications at the belnn­ing
f te buferand

withthedat
atthe

bottom

No

IIDUERG

Merge temporary edit

to control table with

control table (not

operational)

Ise

AUTO Whata AUOaldta N
R/B i h i hcontrol table

od~etcmpet

oDSMON Flow Diagram Page 8 of

5.6-13

dathrat
b
@ complete

Is YsAllocate array

thsautility
processor (utility processor

?ALOCAT) _

RETUPJI bnk and istucto dt
Z _ REALOC Wa No

Allocate user variable there anB/

storage and initialize error

data box noeor ?

Incomplete "Other WIrite error messaqe

control table Ero n errors ERROR IN LOAT

Nlo .

error ero

RETURNr processor

esg
-0arefrrman

14DS140N Flow Diagram Page 9 of 9

5.6-14

MDCMNT - Command Table Editor

MDCMNT is the interfacing routine between the command table editor

(MDCMT) and the control table editor (MDCNT) for the appending of temporary

control table edits to a command. It maintains the order of the working

buffer, modifies the data from what MDCNT provides and deletes specified

edits when required.

Method

Input: Upon entry, the command table is contained in the working buffer

and is split into two parts: the commands and any existing temporary edits.

In addition, the processor name and the sequence number of the command to be

edited as well as an indicator showing the existence, or lack, of previous

temporary edits for this command are input through the calling sequence.

Processinq: A test is made to determine if edits already exist for

this command. If they do, they may be either retained or deleted.
If deletion

is requested, the edits are removed and the remaining edits packed.
Control

is returned to MDCMT with a successful edit status. If the edits are to

be retained, they are moved to the top of the temporary edits, their heading

removed, packed and processini is continued as though they were performed

at this time. If no edits existed, or we are retaining them, a search is

made to determine if the processor exists. If it does not, control is

returned to MDCMT immediately after posting an error message. Otherwise,

the revision number of the processor and the length of the default control

table are obtained.

In order to utilize the control table editor the argument specifications

must be brought into the working buffer. Therefore, a portion of the command

table in the buffer is written to the SMT with the name &CMDTB and the specifi­
cations read in to the buffer in their place. All arguments are then marked

undefined and control is given to the control
table editor (entry MDCNTM).

Upon return from the control table editor, the edits just made are packed

by deleting any duplication in arguments. In addition, specified flags and

data type are placed in the argument label field of the data and the argument

6.1-1

name is placed with the data. A heading is placed "on top" of the edits

which consists of the sequence number of this command, the revision number,

number of edits and the length (inwords) of the edits.

That portion of the command table which was written to the SMT upon

entry is retrieved and placed back in the working buffer. The entry in

the SMT for &CMDTB is deleted and control is returned to MDCMT.

Output: The only outputs from MDCMNT are a status flag indicating

how successful the edits were and any new edits made. The working buffer

remains split. If the user has entered "up arrow" (t)while under MDCMNT

control, the directive entered is contained in a prompting buffer in the

calling sequence and the status flag is set to so indicate.

6.1-2

USAGE

ENTRY MDCMNT

CALL MDCMNT (PNAMESEQNOFLAG#INPUTSTAT)

ARGMT I/O TYPE DIM

PNAME I I I

SEQNO I I I

F-LAG I I I

INPUT 0 I SO

STAT 0 I 1

EXTERNAL REFERENCES

MDCNTM

MDELET

MoGET

MDGETC

MOPUT

SEARCH

DIAGNOSTICS

.. EDCNT ERROR

DEFINITIbN

THIS IS THE PROCESSOR NAME FOR WHICH

TEMPORARY EDITS ARE TO BE MADE.

THIS IS THE SEQUENCE NUMBER OF THE

COMMAND TO WHICH 'TEMPORARY EDITS ARE

TO BE MADE,

THIS IS AN INDICATOR WHICH DETERMINES

THE PRESENCE OF PREVIOUS TEMPOR'ARY

EDITS: s0,NO PREVIOUS EDITS

UIPREVIOUs EDITS DO EXIST BUT

RETAIN THEM

m2,PREVIOUS EDITS EXIST BUT

DELETE THEM.

THIS BUFFER WILL CONTAIN THE

DIRECTIVE ENTERED BY THE USER SHOULD

HE TERMINATE EDITING BY ENTERING AN

UPARROW

THIS IS AN INDICATION OF WHAT

OCCURRED IN MOCMNT*:

sIERROR OCCURRED IN READING OR

WRITING A FILE OR PNKME DOES

NOT EXIST

sOITEMPORARY EDITS PERFORMED

SUCCESSFULLY

-0-I CONTROL TABLE EDITOR (MDCNTM)

ENCOUNTERED AN ERROR WHILE

DOING EDITS

u2,WORKING BUFFER OVERFLOWOR

USER ENTERED UPARROW (t)

THE CONTROL TABLE EDITOR HAS ENCOUNTERED AN ERROR

WHILE DOING THE EDITS (STAT.-I)

**PROCESSOR NAME **s.* NOT FOUND

THE PROCESSOR NAME SPECIFIED COULD NOT BE FOUND IN

PROTAB (STAT-I)

**UNABLE TO READ DEFAULT CONTROL TABLE

WHEN ATTEMPTING TO READ THE ARGUMENT SPECS FROM THIS

PROCESSORS DEFAULT CONTROL TABLE A FATAL ERROR

OCCURRED (STATNi)

**UNABLE TO READ SMT

ATTEMPTING TO READ THE COMMAND TABLE FROM THE SMT

RESULTED IN A FATAL ERROR (STAT-I)

**UNABLE TO WRITE To SHT

6.1-3 rEPRODUCIBILITY OF THl
OQN0NAL PAGE IS POOR

AN ERROR OCCURED WHEN WRITING THE COMMAND TABLE TO

THE SMT (STAT=r)

**WORKING BUFFER OVERFLOWeEOITING ABORTED

THE USER HA S ATTEMPTED TO MAKE TOO MANY EDITS AND

THERE IS NOT ENOUGH ROOM IN THE WORKING BUFFER FOR

THEM (STAT2)

**-.NO TEMPORARY EDI T S PERFORMED--ae

THIS MESSAGE OccuRs WHEN ANY OF THE ABOVE ERRORS

OCCUR,

EXTERNAL STORAGE

NONE

BLANK COMMON
VARB I/O

PBLEN
PROTAB

I
I

COMMON / MDBUFF /

BDATA /0
DsIZE 0
WB I/O

6.1-4

SRHathi YeSoudovDeee o edits foro

table, delete

T efor iedit headingadak
processor name /

l-an PR
 edit tae

Obanrevson uberteeisb
 ti rcso

Put firstOutputo error

message

LENGTT= 68

SObtain revision number,

Default Control Table
length and determine if

length > 68. If so set

LENGTH = 68.

Put first "length" words

of command table into SMT

to make room for control

-table (into &CMTBL)

Wa o STAT= I

suCssumesage

Ye s 6

Get argument

\specifications /

for control table/

Was No STAT I

Yesag

fMDCMMNT Flow Diagram Page Vof Z

6.1-5

Mark all arguments

'UNDEFINED'

Call control table editor

to prompt for edits,

process them and place

them in the working buffer

Waslo Didlo STAT =-1
editnq uer JputOutput error
succssfu 1+3message

NDiSTAT = 2.

STAT = 2
Yes
I Delete repeated arumentst Output error

a

and append heading! adjust wokn bufe

B TDATA ovrlwdmessage
and DSIZE

Retrleve firstadn

tablte fromf SAT

'GT Output error

succesful j message

6.1-6

/ DELET

Delete entry in

•Sift for &CITBL.

MlCM IT Flow .Diaqram Page 2 of 2

REPR!O]DUCIBILITY OP "2
ORIGINAL PAGE IS 10A

6.1-6

MDCMT - Command Table Editor

MDCMT is the driving routine of the command table editor. Its primary

function is to interact with the user at the command level to allow him

to build, or modify, command tables or to append temporary edits to the

control table of an existing command,

Method

Input: The EDCMT directive, with its optional fields, is the only input

to MDCMT. The submonitor calls MDCMT with this directive in the prompting

buffer after it has been processed by MDSCAN.

Processing: MDCMT interprets the input directive and determines what

fields are present. If needed, it obtains a requested command table from

the SMT and, in any event, begins prompting the user to determine what

options are to be performed. The user may perform any of four options:

list, number, delete or enter a command.

The list option allows the user to list all, or a specified portion, of

a command table. The user performs this by entering LIST START,END where

START is the beginning sequence number to start listing from and END is the

last sequence number to be listed. If neither START nor END is input the

entire command table is listed. MDCMT determines if both START and END are

existing commands and, if not, informs the user of such. If the commands

can be listed, MDCMT calls MDCMTL to perform the list. If any of the listed

commands have temporary control table edits appended to them, the edits

are listed immediately following the command by MDCMTL. After completing

this option MDCMT again prompts the user to allow him to perform another

option.

The number option is performed by the user simply entering NUMBER. At

this time MDCMT renumbers all commands in the table. The first command is

given sequence number 100 and each successive command is lO0more than the

command preceding it. Any temporary control table edits that exist are

also renumbered to retain the correlation between the edit and the command.

After completion the user is again prompted to allow him to request another

service.

6.2-1

The user performs the delete function by entering -START,END where

START is the sequence number from which to begin deleting and END is the

sequence number of the last command to delete. If a one or both of the

sequence numbers do not exist, the user is notified of such and reprompted.

If the function can be performed, all the commands between, and including,

START and END are deleted as are any temporary edits which existed for a

deleted command. Once again, the user is prompted, upon completion, for

another option.

The command option allows the user to add new, or modify existing,

commands. MDCMT automatically prompts with sequence numbers anytime the

user is building a new table or begins inserting commands in the table past

the last one currently in the table. In other cases the user is prompted

only with #. The prompted sequence number will be modulo 100 and will be 100

greater than the last automatically prompted command. The user terminates

the automatic prompting by depression of carriage return without entering

a command. At this time the user is prompted with # to allow him to insert

new commands, modify existing ones or perform any of the options described

above. If the user modifies a command which has temporary edits appended,

the edits are deleted. The user specifies temporary edits by appending a

colon (:)to the control table name present in the command. Upon completion

of editing, the command table is sorted, packed and placed into the SMT

and assigned the name provided by the user, or &CMDTB if no name was provided.

Output: If the user terminates the command table editing normally

(i.e., depresses carriage return after being prompted with #) a status flag

(indicating normal completion) is the only output. However, if the user

terminates by entering "up arrow" C+) and enters a directive, not only is

a status flag indicating this fact output, but also the prompting buffer

containing the directive is output to the submonitor (MDSMON).

6.2-2

0 7 15 17 18 19

Number of Commands Number of Edits
(NCIIDS) (NEDITS)
Sequence umber. Control

Table Type

Processor *Name

35

Heading

Command
No. 1

Control Table Name

Sequence Number - .

Processor Name

Control
Table Type

Command
No. 2

Control Table flame

Sequence Number Revision
151 Number 23

Length (inwords) of This Edit

Number of
Arguments

Temporary
Edit 1

CF DataType Argument12 Label 181

Argument Identifier

Size,

Size1

Data

Length,
CF CF lP I DataType ArgumentLabel

Argument Identifier

Siee2S

Size2

Data!

Sequence flumber Revision Number of
Number Arguments

Length

Temporary

Edit 2

C RPURODrTIBILM OF

Command Table Format (Packed) o()t "W_APAGE IS POO1

6.2-3

Command Table Definitions

Commands: Total of 3 * NCMDS + 1 words

Print Flag - A flag indicating the level of Control Table print at

execution.

Edit - Indicates the presence of temporary edits for this

command.

Temporary Edits

CF - Completion flag;

= 0 Argument is currently undefined

= 1 Incomplete

= 2 Complete

P - Print flag;

= 0 Argument not to be printed at execution time

= 1 Printed

I - Indicator;

= 0 Immediate data (=)

= 1 Execution time data (@)

6.2-4

USAGE

ENTRY MDCMT

CALL MDCMT t INPUTSTATUS

ARGMT I/O TYPE D-IM DEFINITION

INPUT J/0 I SO UPON ENTRY THIS BUFFER CONTAINS THE
COMMANDCSCANNED)
(NEWNAME.) IT IS

!EDcMT (OLONAME),
USED INTERNALLY AS

A PROMPTI'NG BUFFER AND IS-AN oUTpUT
ONLY WHEN THE USER ENTERS A NEW
DIRECTIVE WHILE MDCMT is PROMPTING

STATUS .0 I 1 THIS VARIABLE IS ONLY USED WHEN THE
USER INPUTS A NEW DIRECTIVE WHILE
MDCMT IS IN CONTROL, IT TELLS MDSMON

EXTERNAL REFERENCES A DIRECTI'VE HAS BEEN ENTERED,

MDCMNT

MDCMTL

MDCMTS

MDGET

MDPRMT

MDPUT

MDSPLT

MDVCMD

SORTI

DIAGNOSTICS

*eCOMMAND TABLE COULD
NOT BE SAVED

THE NAMED COMMAND TABLE COULD NOT BE INSERTED

IN THE SMT.

0o0.e..o. IS NOT AN EXISTING COMMAND TABLE

THE USER HAS ENTERED THE NAME OF A COMMAND TABLE TO
BE MODIFIED WHICH COULD NOT BE FOUND
IN THE SMT,

***SYNTAX ERROR

THE USER HAS ENTERED INCORRECT SYNTAX FOR ONE OF

THE OPTIONS AVAILABLE UNDER THE EDCMT DIRECTIVE.

o.'UNDEFINED SEQUENCE NUMBER

THE USER HAS SELECTED THE LIST OPTION BUT ONEOR

BOTH, OF THE SEQUENCE NUMBERS HE HAS INPUT DOES NOT

EXIST.

*OWORKING BUFFER OVERFLOW--EDITING ABORTED, COMMAND TABLE

*@et# SAVED BUT MAy NOT BE COMPLETE

THE USERS MODIFICATIONS REQUIRED
THAT MORE SPACE THAN

IS AVAILABLE BE USED. THE TABLE IS SAVED BUT SHOULD

BE USED ONLY AFTER BEING COMPLETELY CHECKED.

EXTERNAL STORAGE

NONE

COMMON / MDBUFF /
MDLEN. I
BDATA I/O
DSIZE I/O
WBUF

COMMON / MDCODE J
 h hI Is'DUOPORPAGE O
NAME IWWI"
INTGR I

6.2-5

EOS I
DOLLAR I
PERCNT I
COMMA
UPARRW
MINUS I
FOUND I

BLANK COMMON
NONE

6.2-6

inputcornuand

and verifysyntax

given N name , SODTB

S ntialize data A

01d n0 I o pntersandst A

Initializeworkinq

buffer with old

naxaeIscontnd table

mesag

Set data pointers

and flags

/ HDSPLT

S Split working

Sbuffer into

cu nua and

teomporary
edits

set pronpt buffer

to I to allo~wuser

to insert his own,

sequence number

MCIPTFlo.Diagr. Page I of 3

6.2-7

Detenmine which
sequence naber
to pronpt with
next

It . e. ,eic n Res et pr pt bu f f e r

Prcpt for

Co'and

So ur~ergrtthe con~ands by eSrt the crmiando Sort the cmnands

fltersine range
of sequence aa,
"ce slser desires

lt~atostendd

st ST
Sottheerane bys

obe lited
lfeal' r

Beginning witb 100,
renumbercommends
Oinincrements ofbedltdI

100l~

RCTteftesponredits

Z)
artw

the%corthemsandsat

(with ei gwn 0,
eube oensBeeen

I bdst

tennrne

DLEIST

ag

fc

accnntblsrth

(ut°e

!

l

exist,

SORTINA SORT]
adjustnsrqurnc

SS O

IsBITOOF

fliREP00RODUCBtablO

existis1

ODyeB

=adAus seuec

TI

H

POOR Ye

No Outputerrorr

Yes

I Net ew .. .
kI bfe od esg /nto r

Yes eD

Yese

4DMKfT OW1ar Pge3o3

Delete
emporar

MDCMTL - Command Table Editor

MDCMTL is the routine which is used to print the command table. It is

structured such that all or part of the table may be printed.

Method

Input: All input is contained in the calling sequence and consists of:

the number of the command at which the print begins, the number at which to

stop the print, a flag indicating if called by the DUMP directive, if called

by the command table editor or if the temporary edits are not to be listed,

and a buffer containing the command table.

Processina: Each command to be listed is broken down into its con­

stituent parts and printed. As each command is printed, a check is made

for the existence of temporary edits. If they do exist and their listing

is desired, each edit is printed individually. The type of each edit is

determined and the required listing routine is called to do the print. The

origin of the print request must be determined for, in one instance, the

buffer containing the table is split into commands and edits and, in

another case, the table is not.

Output: The only output from MDCMTL is the print of the-command table.

6.3-1

USAGE

ENTRY MDCMTL

CALL MDCMTL (STARTsENDSwBUFFLAG)

DEFINITION
'ARGHT I/0 TyPE DIM

THE NUMBER OF THE COMMAND AT WHICH
START I I I

THE PRINT BEGINS.

I I I THE NUMBER OF THE COMMAND AT WHICH

THE PRINT STOPS

VARS THE BUFFER CONTAINING THE COMMAND

END

WBUF I I

TABLE

FLAG I I I AN INDICATION OF THE CALLING ROUTINE:

*OCALL BY DUMP DIRECTIVE

Ii1CALL By COMMAND TABLE EDITOR

u2,DO NOT LIST THE TEMP EDITS

EXTERNAL REFERENCES

MOLSTO

MDLSTI

MDLSTR

MOLSTH

DIAGNOSTICS

NONE

EXTERNAL STORAGE

NONE

COMMON / MDBUFF /

VARB I/0

BDATA I

BLANK COMMON

NONE

LOCAL COMMON

NONE

OF THEWWRODUCIBILITY
PAGE IS POOR(fltGNA

6.3-2

MDCMTL

Determine the range
of commands to be
listed (input)

command

List thetep

-- coandsbod s i
ed

MDCMTL Flow Diagram

6.3-3

MDCMTS - Command Table Editor

MDCMTS searches the comand table for a requested command (by sequence

number) and returns the number of the command corresponding to the sequence

number. If the requested number does not match any in the table, the next

largest command is returned.

Method

Input: All input is contained in the calling sequence and is: the

command table, the number of commands in the table and the sequence number

of the requested command.

Processino: If the command table is not empty, it is searched until

a sequence number greater than, or equal to, the requested number is found.

If none is found the number of the last command in the table is returned.

If the found number is not equal to the requested one, a flag is et indicat­

ing this and the found command's number is returned.

Output: All output is through the calling sequence and consists of the

number of the command corresponding to the requested sequence number, or

the number corresponding to the next highest command if the requested number

did not exist, and a flag indicating either an empty command-table, the

requested command existed or the requested command did not exist and the

next highest number was returned.

6.4-1

USAGE

ENTRY HDCMTS

CALL MDCMTS (CMDTABNCMDSSEQNO,CMDSTATUS)

ARGMT 1/O TYPE DIM

CMDTAB I I VARB
NCMDS I I I
SEQNO I I I

CMD 0 1 1

STATUS 0 1 1

EXTERNAL REFERENCES

NONE

DIAGNOSTICS

NONE

EXTERNAL STORAGE

NONE

BLANK COMMON

NONE

LOCAL COMMON

NONE

DEFINITION

BUFFER CONTAINING THE COMMAND TABLE

NUMBER OF COMMANDS IN THE TABLE

SEQUENCE NUMBER OF THE DESIRED

COMMAND

NUMBER OF THE COMMAND CORRESPONDING

TO SEQNo (OR THE NEXT ONE IF SEQNO IS

NOT FOUND)

VALIDITY OF STATUS:

0OeSEQNO FOUNDRETURN OK

u-IoNULL COMMAND TABLE

ISEGNO NOT FOUNDNEXT COMMAND

RETURNED

6.4-2

MDALST - Control Table Editor

The purpose of MDALST is to list or list and prompt the values of a

given argument in a control table.

Method

Input: The input to MDALST is the control table, a pointer to the

argument specifications in the control table, a pointer to the start of

the data in the control table, the length of the control table, and a flag

designating whether values are to be output only or output and the response

read. This data is passed to MDALST through the calling sequence.

Processing: MDALST calls MDLKUP to locate the argument data for the

requested argument. If MDLKUP cannot locate the argument data, then an

error message is printed stating the variable is undefined. All messages

and displays are output by MDALST for output only requests. For output and

read requests, the data is printed and a response prompted by MDPRMT.

Values for "=" (immediate data) and "@" (execution time data) are pro­

cessed and printed by MDALST or by calls to MDPRAT depending upon the request.

Free field data is printed in octal via MDLSTO, real via MDLSTR and

integer via MDLSTI if output only is requested; otherwise, MDPRMI is called.

Real values are printed by MDLSTR and Hollerith values by MDLSTH, unless

the request was for list and read then MDPRMR is called for real data and

MDPRMH for Hollerith.

Output: The output from MDALST consists of a buffer containing the

user's response as processed by MDSCAN and a status flag. The status flag

indicates the type of return from MDALST (0 = normal, other = undefined

argument).

7.1-1

usAGE

ENTRY MDALST

CALL MDALST (CTABtARGPTR1 BDATA,LEN,FLAGBUFFSTATI

ARG M T

CTAB
ARGPTR

I/0 TYPE

I I
I I

DIM

VARB
I

BDATA I I I

LEN
FLAG

I
I

I
I

I
I

BuFF 0 1 VARB

STAT 0 1 1

EXTERNAL REFERENCES
MOLKUP
MDLSTH
MOLSTI
MDLSTO
MDLSTR
MoPRMH
MDPRMI

MOPRMR
MDPRMT

DIAGNOSTICS
NONE

EXTERNAL STORAGE
NONE

BLANK COMMON

NONE

LOCAL COMMON

NONE

DEFINITION.

cONTROL TABLE

INDEX INTO THE cONTROL TABLE ARGUMENT

sPECS

INDEX INTO THE CONTROL TABLL-

BEGINNING OF THE DATA

PROCESSING FLAG.

TYPE OF PROCESSING

I1OUTPUT VALUES
23OUTPUT VALUES AND READ RESPONSE
BUFFER CONTAINING USERS RE'sPONSE A.
PROCESSED BY MDSCAN

STATUS OF PROCESSINb

OSNORMAL RETURN

-I UP ARROW RESPONSE

OF

f - p

7.1-2

TMDALST

DL
KU
P

FneirneadHllrihere

Pdataentd

En r o Print message

df ndindicating
var-

? iable is undefined

F e

'

Prindari
dat Pin

Scan

scn

n

IInteger

IPrint data I

in integer

format

. Real

Print data

in real

format

IHollerith

Print data I

in hollerith

format

Fe

Print
data

in

_____________________________________[octal, real
and integer
formats

Yes

Place users

response in
output buffer

7.1

MDALST Flow Diagram

7.1-3

MDCNT - Control Table Editor

MDCNT is the primary subroutine of the control table editor. Its pur­

pose is to prompt the user, accept I/0 specifications, and place these into a

control table. There are two alternate entrances to M1DCNT; they are MDEDCN

and MDCMTN. MDEDCN is called to complete a control table being used to execute

a processor or to modify a control table immediately before execution. MDCMTN

is called for temporary edits.

Method

Input: The input to MDCNT is the buffer containing the user's input

EDCNT directive after it has been processed by MDSCAN. The EDCNT directive

allows the user to interactively create or modify a control table. The

control table contains the argument specifications and data needed for the

execution of a processor. When the EDCNT directive is requested, MDCNT

is called by the submonitor (MDSMON).

Processing

MDCNT must first validate the syntax of the EDCNT directive and then

interpret the fields. ?IDGET is called to bring a existing control table

(ifspecified on the directive) into the working buffer from the SMT. If

an existing control table is not specified, MDGETC is called to read the

default control table into the working buffer. MDSPLT is called to separate

the argument specs and data portions of the control table in the working

buffer.

Depending on the option(s) used on the EDCNT directive, the user is

prompted only for incomplete arguments or also prompted to concur with

existing values of completed arguments. If a "?" is entered to the right

of an 11="1 or "@ sign, MDDEFN is called to list the textual definition of

this argument. MDC0NT is called to process all other user responses

and to return a status indicating what is to be prompted next.

If the scan available flag of the control table is set and one or

more arguments are incomplete, the user is prompted to input &SCANX,

&SCANY, and &DATBX. The user may, of course, input or modify any of these

7.2-1

scan control arguments directly.

When the user indicates that no further editing is desired, the com­

plete bit of the control table is set and the control table is packed

(by MDCTPK) and stored into the SMT (by MDPUT).

Entry point MDEDCN is called by the execution controller to complete

and/or modify a control table about to be used in a processor execution.

The control table is already in the working buffer, and split when MDEDCN

is called. The control table is not packed and stored into the SMT when

MDEDCN is exited.

Entry point MDCMNT is called by the cormand table editor to build

temporary edits. The control table is already in the working buffer and

split when MDCMNT is called. The "automatic" prompting loop is not

executed for MDCMNT, rather the user specifies all agrument to be edited.

The control table is not packed and stored into the SMIT when MDCMNT is

called.

Output: The output from MDCNT, MDEDCN, and MDCMTM consists of a

control table either created or modified and a flag indicating the status

of the routines processing. Since many routines are called, a negative

status will be set by the routine encountering an error; unless a fatal

error occurs, then the control table editor will set the status flag

indicating this error.

7.2-2

Word 1 	 Processor Name

, of S = ArgumentsRevision #,Word 2 o 	 7 8 12 13 14 1516 35

Argument Identifier (alphanumerical name)Arg.

Entry I-Dim J-Dim Type C 1 I/0 CF 34 	 3

D Label 	(Arg. Number) 7 Size
Data 0 17118 25

Entry _

Data for this Arg.

Label 	 17118 Size

Data

Control Table

7.2-3

Control Table Definitions

Header (first 2 words)

# of Arguments: 	 # of arguments in this control table (31)

COMP (Bit 13): 	 Is complete data specified for all arguments
= 0, complete
= 1, incomplete

SCBL (Bit 14): 	 Is scan permitted

= 0, No
= 1,Yes

SCON (Bit 15): 	 Is scan active

= 0, No
= 1, Yes

Argument specifications

Total of 2* # of arguments words. If scan is active 6 additional

words of argument specifications exist.

I-Dim: 	 I-dimension of this argument

J-Dim: 	 J-dimension

Type: 	 2000 = user local free

2001 = user local integer

2002 = user local real

etc.

C: 	 Constant flag

= 0,Normal arg.

= 1,Constant arg.

= 2, Scan variable

= 3, Data box

1/0: 	 I/O flag

= 0, Input

= 1, Input/output

= 2, Output

CF: 	 Completion flag

= 0, Argument is currently undefined

= 1, Incomplete

= 2, Complete

P: 	 Print flag

- 0, Argument to not be prilted at execution time

- 1, Printed

I: 	 Indication
= 0, Immediate data (=)
= 1, Execution time data (@) RFARODU0 ILITY OF TjiR

7.2-4 	 ORIGITNAL PAGE ISPOOR

Data (remainder of table consists of variable length entries)

Label: 	 Argument number (relative to first arg.)

Size: 	 # of words (including this header) contained in this data entry

Data: 	 for '='these are SIZE-l values
for @' this is 'NAME' (name of SMT entry where data exists),
type, (2000, 2001, etc.), I-Sub, J-Sub

NOTE: 	 In the working buffer, the data area is filled from the bottom up.

If an argument appears in the data area more than once the data located

"highest" in the data area is used.

7.2-5

USAGE
 ENTRY MDCNT

CALL MDCNT (BUFFOSTAT)

ARGMT I/O TYPE DIM DEFINITION

BUFF I I VARB INPUT BUFFER WHICH HAS BEEN PROCESSED

BY MDSCAN

STAT 0 I I STATUS OF MDCNT PROCESSING

OwNORMAL RETURN

-IFATAL ERROR

NEG.ERROR STATUS RFTURNED FROM

OTHER SUBROUTINES CALLED

EXTERNAL REFERENCES

... MDALST

MDCNTS

MDCCNT

MDCTPK

MDDEFN
MOGET REPRODUCIBILlTI OF
MDGETC ORIGINAL PAGE IS POOR
MDIMS

MDLIST

MDLKUP

MDPRMT

MDPUT
MDSPEC

MDSPLT

SEARCH

DIAGNOSTICS

0 REVISION NUMBER OF PROCESSOR (e.o) DOES NOT MATCH

THAT OF CONTROL TABLE C...).

THE PROCESSOR'S REVISION NUMBER DOES NnT MATCH

THE REVISION NUMBER IN'THE CONTROL TABLE.

00* WARNING *** *.*... IS A CONTROL TABLE FOR

BUT THIS EDIT IILL PRODUCE A CONTROL TABLE
FOR o

SACoNTROL TABLE WAS--REQUESTED- FOR AN INCORRECT
PROCESSOR

0*' CONFLICT BETWqEEN TYPE OF DATA INPIUT AND TYPE OF **a..
INCORRECT DATA SPECIFIED

004 SUBSCRIPT OUT OF RANGE -- DIMENSION OF *..** IS ea,,,

SUBSCRIPT OUTSIDE RANGE

0*0 SYNTAX ERROR -- TRY AGAIN

SYNTAX ERROR FOUND

000 COULD NOT FIND NAME IN LIST -- TRY AGAIN

DATA FOR NAME COULD NOT BE FOUND IN INS

000 TOO MUCH DATA FOR ... * ONLY ACCEPTED, ENOUGH TO FILL

ARRAy

TOO MUCH DATA WAS INPUT
000 NOT A LEGCAL ARGID FOR PROCESSOR,

INCORRECT ARGUMENT ID SPECIFIED FOR PROCESSOR
*' READ ERROR IN READING FROM ON LINt, STORAGE DEVICE

READ ERROR OCCURRED FROM RAO

MAY NOT OUTPUT A GLOBAL IMS {St- -IE"

7.2-6

AN INS VARIABLE *AS RE9UESTED FOR OUTPUT

no0 06... MAY ONLY BE SPECIFIED WITH a

AN OUTPUT VARIABLE WAS SPECIFIED'AS AN INPUT VARIABLE

FATAL ERRORS

000 INVALID SYNTAX m*4

AN INVALID SYNTAX WAS SPECIFIED

9.0 INVALID PROCESSOR NAME 0o0

THE PROCESSOR NAME SPECIFIED WAS NOT FOUN IN PROTAB
D

*00 TOO LARGE FOR WORKING BUFFER

THE CONTROL TABLE FOR PROCESSOR IS TO LARGE

FOR THE WORKING BUFFER.
0*0 READ ERROR IN MDGET so*

READ ERROR OCCURRED IN rOGET

*' COULD NOT FIND e..... IN I1S ***
COULD NOT FIND DATA FOR PROCESSOR NAMFn IN IMS

a.. COULD NOT FIND *..... IN SMT a*.
COULD NOT FIND DATA FOR PROCESSOR NAMEO IN SMT

0o* COULD NOT FIND DEFAULT CONTROL TARLE FOR I...a
DEFAULT CONTROL TABLE FOR COULD NOT RE FOUND
BY MDGETC

0*0 READ ERROR TRYING TO READ DEFAULT, CONTROL TARLE
A READ ERROR OCCURRED VHILE TRYING TO READ A DEFAULT
CONTROL TABLE

o* I/O ERROR WHILE FORMATTING A PROMpT
AN I/O ERROR OCCURRED WHILE FORMATTING A PROMPT

o READ ERROR WHILE READING RESPONSE
A READ ERROR OCCURRED WHILE READING A RESPONSE FROM

MDPRMT
too WORKING BUFFER OVERFLOW *0

CONTROL TABLE WORKING BUFFER NOT LARGE ENOUGH TO
HOLD DATA

000 UNIDENTIFIABLE STATUs ... FROM, MOCONT
AN UNIOENTIFIABLE STATUS VALUE WAS RECEIVED FROM

MDCoNT
nO ERROR WHILE WRITING TO ONLINE STORAGE

RAD WRITE FAILED
*00 SUB.MONITOR TABLE (SMT) FULL *

COULD NOT ENTER SIT ENTRY

EXTERNAL STORAGE

NONE

BLANK COMMON

VARB 1/O

PROTAB I

PTBLEN I

COMMON /MDCODE/
ASTRSK I
AT I
BCKSLH I

COMMA I

DOLLAR I

EOS I

EQUALS I

LPAR I 7.2-7

NAME
PERCNT
QUESMK
RPAR
SUBS
UPARRW

I
I
I
I
I

-

COMMON /MDBUFF/
RDATA 1/0
MDLEN I
SIZE I/O

WB I/

LOCAL COMMON
VARB I/O TYPE DIM LOC RELADD DEFINITION

NONE

7.2-8

TDN

Input: Buffer (BlUFF)
containinq EDCMT directive

Call SEARCH
to find processor
name

Isolate processor name and verify
thatit is a valid processor

CalelDGTiei

Old o read defaut.on-

CallrkInG buffer

cont roltable into

n cobero lo the directve

SMT

workin buffer ssr

revision ieast roeso

eterine level of prompting by
number of *'s on the directlv.'
image set PRIIFLG = 0, 1 or 2

Call NDSPL to sprt

Verify that control table in

working buffer has soffe
revision number as processor

workinq buffer into specs
and data areas

A

iDUCNTFlow Diagram Page 1 of 4

7.2-9

Input- Buffer (BUFF) for
use in prompting the user
and receiving I/O specifi­
cations

Set PP1IFLG = 0 and IlTYPE = -1
indicating that tie have
entered via I10EDC1I

A

Calln prmpt git

firetaluet

(oe

flgco

c e i n e write =a

of p ltbe? Ca l l MOCAEST t o r imte

0
ous~~ rgmet

~arguments

0 LSncopetPtoChsll

(und

CC defeni
withntaruens

hi

proPOO

values

AGE

CallBI

7.2-10

R IA pAGESto litOomlee

automati c

Still

prompt-Stln n

inPf
toprmp

ihagdad=o

or as undefined. If scan

argument i s sue message.

Response
?

definition of this

a g m n

Call MDCONT
to process

/0

satspecificatin and
re turn

stt sand subscript(s) of

next prompt

to return the
various specs
for a given con­

trol table

compl eted?)

messoa)
mliesagpeors)

Iral

Yes

ing made7

DCNT FlowDiagra

7.2-11

n(Continued)
Page 3 of 4

with a "\" allowing
user to specify arq. id

No Have any I rite text eplaling
arqs been leftResponse end of automtic prompt­

plete and scan ina loop and user options

Yesflame
e
C lval ?Tt rmtSa

data boxaledonndito proapt ~or

wit Otherspciie

Response

Write text explaining
specification of

scan arguments

teCTPK Yes ackSet conmplete indicator for Call RDLKUP to Call to
portin- DCT (ie, the worklnq bufferof ancontrol table by examining loacatethe mdata

allartrol table
arguments)

I .

/Call
 tHDPUT to store

;IOCT Flow Diagram (Continued) Page 4 of 4

7.2-12

gflODTCIBWLffy OF TH-M

PM' 1E ISJ'11.hT\ POOW

MDCNTE - Control Table Editor

The purpose of MDCNTE is to process the values to the right of an

equals sign. It transfers the data values from the input buffer into the

control table contained in the working buffer. MDCNTA is an alternate

entrance and has the same purpose as MDCNTE except it processes value to

the right of an at (@)sign.

Method

Input: The input to MDCNTE consists of the following:

(a) The control table in the working buffer and the index to the data

entry to be filled.

(b) The user's edit line as output by MDSCAN and the index to the

next field in this buffer.

(c) The displacement into this data entry at which the first field

belongs.

(d) The first and second subscript limits.

(e) The argument completion status.

(f) The type of argument from argument specifications.

The input to MDCNTA is the same input as (a), (b), and (f)of MDCNTE plus a

flag designating the I/0 for the argument.

Processing: MDCNTE will update a control table with the values to the

right of an equals on a control table edit. Validity checks will be made

and when an error condition occurs the status flag is set accordingly.

It is verified that values (real, integer, Hollerith or octal) requested

have the correct data type specified, that inserted data may not overflow

the table, and that when a % or $ is requested a name must follow. It is

also verified that subscripts are within their defined limits. There is an

-exception to this test. If the subscript designates the array to be used

as a vector and the user has reversed the subscripts then MDCNTE will allow

the subscript to be processed.

7.3-1

When 	a variable name is specified, MDGET is called to-get the data from

If the data is not found in the SMT, MDIMS is called to find the
the SMT.

data in the IMS. If the data exists in neither area, an error condition is

flagged.

There is an alternate entrance, MDCNTA, which updates a control table

with fields on the right side of an at (@)sign on a control table edit. It

sets the data type flag to indicate temporary, user's permanent, or IMS data

into the control table. It also stores the subscripts into the control

table in the working buffer.

Whether the program was entered from MDCNTE or MDCNTA, a check for a

valid end-of-statement is made and the output data flags set before the

subroutine returns to the caller.

Output: The output from MDCNTE(A) consists of an asterisk status flag,

a termination indicator, a counter containing the origin displacement from

the first data word to the last data word filled, and a flag indicating

the processing status.

7.3-2

USAGE

ENTRY MDCNTE

CALL MOCNTE (CTAB.CPTRiBUFFBPTR-;TDSPTrDTn;J rMCOMP.TTPE,

ASTATtTERMsCOUNTSTAT)

nEFINITION
ARGMT I/O TYPE DIM

CTAB I I VARB CONTROL TABLE

CPTR I I I INDEX TO THE DATA ENTRY TO BE FILLED

BUFF I I VARB USER'S EDIT LINE AS OUTPUT BY MDSCAN

BPTR I I I INDEX TO NEXT FIELD IN BUFF

DISP I I I DISPLACEMENT INTO THIS DATA ENTRY AT
WHICH FIRST FIELD BELONGS

IDIM I I I-DIMENSION, jST SUBSCRIPT LIMIT

JDIM I I J-DIMENSION, 2ND SUBSCRIPT LIMIT

(IF SINGULARLY DIMENSIONED, THIS T

THE SUBSCRIPT LIMIT)

cOMP I I COMPLETION FLAG
2=ARGUMENT COMPLETE
NnT EQUAL TO 2-NOT CURRENTLY COMPLETE

TYPE I I I TYPE OF THIS ARGUMENT (FROM ARGUMENT
SPECS.)

ASTAT 0 1 ASTERISK STATUS

OmNO ASTERISKIDONE *,7=TWO *'S
TERM 0 1 I TERMINATION INDICATOR

OsNO BACKSLASH

InLINE TERMINATED WITH BACKSLASH

COUNT 0 I' I ONE ORIGIN DISPLACEMENT FROM THE IsT

DATA WORD TO THE LAST nATA WORD

FILLED.
STAT 0 1 1 RETURN STATUS

IsSIZE OF DATA IS GREATER THAN

THE MAXIMUM SIZE

OsAUGUMENT COMPLETE

. 2SINCORRECT DATA TYPE

- 3zTOO MUCH DATA INPUT
- 'ISUBSCRIPT OUT OF RANGE

. S=SYNTAX ERROR

% 9.READ ERROR FROM RA

-11 DATA NOT IN IMS

ENTRY MDCNTA

CALL MDCNTA(CTABCPTRBUFF,BPTRITOFLGTYPEASTATTERMCOUNT,

STAT)

DEFINITION
ARGMT I/O TYPE DIM

I VARB CONTROL TABLE
CTAB I

CPTR I I I INDEX TO
THE DATA ENTRY To BE FILLED

USER'S EDIT LINE AS
OUTPUT BY MDSCAN

BUFF I I VARB

INDEX TO NEXT FtELO-tN BUFF
BPTR V I 	 I

I INPUT/OUTPUT FLAGIOFLAG I I

OSARGUMENT IS INPUT

ISARGUNENT I5 INPUT/OUTPUT

2UARGUMENT IS OUTPUT

I TYPE OF THIS ARGUMENT IFROM ARGUMFNT
TYPE I I

SPECS.)

ASTAT 0 I ASTERISK STATUS

REPRODUC rITY OF THr
7.-tGh TAT, PAGE IS POOR

TERM

COUNT

STAT

OW

0C

0 -

I I

1

OzNO ASTERISKIUONE &'4-TWOa'S
TERMINATION INDICATOR
OwNO BACKSLASH
IsLINE TERMU'NATED WITH BAcKSLASH

ONE ORIGIN DISPLACEMENT FROM THE IST

DATA WORD To THE LAST DATA WORD
FILLED*
RETURN STATUS

ImSIZE OF DATA IS GRFATER THAN
THE 'MAXIMUM-SIZE

O-AUGUMENT COMPLETE
- SmSYNTAX ERROR

-IQ=NO DATA INPUT-ARGUMENT IS TO RE
MARKED UNnEFINED

-12-MAY NOT OUTPUT AN JMS VARIABLF

GT !'INCOMPLETE--COUNT+I IS THE
NEXT WORD OF THE ARRAY TO BE
FILLED

EXTERNAL REFERENCES
MOGET
MDIMS

DIAGNOSTICS
NONE

EXTERNAL STORAGE
NONE

BLANK COMMON

NONE

COMMON /MDCODE/
VARB 1/0
ASTRSK I
BCKSLH I
DOLLAR I
COS - I
HOLLRH I
INTEGR I
NAME I
OCTAL I
PERCNT I
REAL I
REPEAT I
SUBS I

LOCAL COMMON

NONE

7.3-4

Are .o1

arguensargumentscomp?je
Set flaq to

udefied

YYes

vau el
Holeit

esI hs N Set statusfr

tvoluecdatav

field aoto
B/2 ~ te inptt~d/

toable ata

sta

I~I

ror

?

staasta

Yes-

eet

CT I

Getenext

iga

Save name for

fIDGET call

IIDCUTEoFlo iage

Call HIDGET to

retrieve data

from the SHit

Ws Yes

DiYes Set status flag to

trasferea al aywords transferred/

the mfuot eu taimum,

[,No

SCall HIMls to find

\data in the IllS

dat iat T es

HIS not exist in SlIT

A/lREPRODUCIBILTY OF THE
ORIGINAL PAGE IS POOR

MOCITE Flw Diagram (Continued) Page 2 of 4

7.3-6

r/2,4
+

su

isubscript(s)

sritun

Is
Yes

IsYs

repeat

Set repeat

counterA/

within

t

Ao

subscripts out­

sdl mt

Set status
to

enot at nt Se ttst

for output

aIs Yes

atsaledysSEtta3
s et

Nio

nooa
s

retrrn

IDCNTE Flow Diagram (Continued) Paqe 3 of 4

7.3-7

is-

vaettype in,
controttablea

Yes Se

e- 1

lo

ito $otablerrydaa /

1aDguT

in

Flo Dinga

ia I

(ni:ag nudIN

ay7.ot-b

D/ o-

MDCNTS - Control Table Editor

The purpose of MDCNTS is to search a given control table for an argu­

ment identifier and return its argument specifications.

Method

Input: The input to MDCNTS consists of an argument identifier and

control table.

Processing: MDCNTS searches the control table until an argument

identifier match is found. The entry number of this identifier is saved

as the argument number. The argument number and the control table are passed

to MDSPEC to get the output parameters.

Output: The output from MDCNTS consists of the following control

table items:

Argument number

Type of variable

I-dimension (Ist subscript limit)

J-dimension (2nd subscript limit)

I/0 flag

Completion flag

@ indicator flag

For mote detailed information about the control table refer to MDCNT.

7.4-1

USAGE

ENTRY MDCNTS

CALL MDcNTS (ARGIDCTABARGNUM.TYPEIDIMsJDIMLOFL*,COMPL.

ECUATSTAT)

ARGMT I/0 TYPE DIM DEFINITION

ARGID I H I ARGUMENT IDENTIFICATION
CTAB I I VARB CONTROL TABLE
ARGNUM 0 1 1 ARGUMENT NUMBER
TYPE 0 1 1 ARGUMENT TYPE

IDIM 0 1 1 I-DIMENSION, IST SUBSCRIPT LIMIT
JdOIM 0 1 1 J-DIMENSION, 2ND SUBSCRIPT LIMIT
IOFLG 0 1 1 INPUT/OUTPUT FLAG

o0INPUT
ImINPUT/OUTPUT
2-OUTPUT

COMPL 0 1 1 COMPLETION FLAG
OaARGUMENT IS CURRENTLY UNDEFINEU
I=THIS ARGUMENT IS INCOMPLLTL

2.THIS ARGUMENT IS COMPLETL
EQUAT 0 1 1 EQUAL/AT FLAG

OzDATA FOR THIS ARGUMENT ARE
IMMEDIATE VALUES (-)

l-THE DATA FOR THIS ARGUMENT ANE
TO BE OETERMINED AT HUN TIME (AT)

STAT 0 I 1 STATUS FLAG
OSNORMAL RETURN

-IRCOULD NOT FIND ARbUMENT 1.0.

EXTERNAL REFERENCES

MDSPEC

DIAGNOSTICS

NONE

EXTERNAL STORAGE

NONE

BLANK COMMON

NONE

LOCAL COMMON

NONE 	 RVIPRODUIBILITlOF THE

6101NAL PAGE IS POOR

7.4-2

MDCNTS

argument
A thereto/ for no ID fou~nd process Set status fag

Does this Noargument IDmatch

th requested IDGenxtI

SYes

toMaClTMFSPEC
extract output

Set status flag to

indiateprocessing

normal

MDCNTS Flow Diagram

7.4-3

MDCONT - Control Table Editor

The purpose of MDCONT is to process one user generated control table

edit.

Method

Input: The input to MDCONT consists of the user input buffer after

MDSCAN's processing.

Processing: MDCONT sets the completion flag and print flag in the argu­
ment specifications and the label (argument number) and size of data entry

in the data area of the control table. The argument number is found by

calling MDEDIT to locate the argument ID and then using this ID
as input to MDCNTS

to locate the argument number.

The size of the data entry is determined when the argument ID has been

previously undefined or the
=
\@ flag has changed. When this condition occurs,

the data entry size is calculated in
two ways. If the request is for an

equals, the size is determined by the product of the I and J dimensions plus

one. If the request were for an
@ sign, the argument size is set to five.
 For

an @ sign request it requires one word each for the name, type, I-dimension,

J-dimension, and the label.
 If the argument ID is defined and the
= \@ flag

has not changed then MDLKUP is called to look up the data portion of an argu­
ment in the control table.

MDCONT verifies that subscripts are within the maximum size and correctly

used.
 It also verifies that neither an output argument nor RAD resident data

is specified with an equals.
After the validation checks have been passed,

MDCNTE (MDCNTA) is called to update the control table with values on the right

side of an equals sign (at sign).

MDCONT also processes print requests. If arguments from the control table are

requested to be listed (denoted by *), MDALST is called to list them.
If the

arguments are to also be listed at execution time (denoted by **),
 then the

print flag is set in the control table.

7.5-1

After the data has been verified, the completion flag isset inthe

argument specifications of the control table. The setting of the completion

flag isdetermined from the status returned from the other subroutines called.

The I and J dimensions are also set into the control table. When processing

is complete a status flag is returned containing the conditions found during

processing.

Output: The output from MDCONT consists of a flag containing the pro­

cessing status and the I and J dimensions for subscripts.

7.5-2

USA4E
____-- .ENtRY _MPCNT ____. ~ -----.

CALL MDCONT (BUFFIDIMsJDIMSTATUSI

ARGMT i/O TyPE DIM -DEFINITION

BUFF I I VARB THE USER INPUT BUFFER AFTER MDSCAN
---- -... pROCESS ING.

STATUS 0 1 1 STATUS FROM MOCONT PROCESSING
I - --­ . o--L~--4E)-SION--I-S--SUaScRI-P4----I- .T--

JDI

____________ ____

0

I

_ _I

1

....

-

--

J-DIMENSION: ZND SUBSCRIPT LIMIT
-OENITRY COMPLETE .. -........

ISENTRY COMPLETE BUT USER REQUESTED
..... DtTtONAL OPpORTUNIT -FOR--INPUT

- 2SDATA OF INCORRECT TYPE FOUND
__._..ROMPTWI-TH ±104Mt.tNDA-.JDIt..
- 3TOC MUCH DATA INPUT

ANSUB-SCRIPT -OUT- OF--RANGE-­
- SuSYNTAX ERROR. PROMPT WITH 'IDIM.

AND 1M............-------.
- 6INCOMPLETE AND SHOULD PROMPT FOR

__-AOD-.NAL- VALUES---AT-- L0Ln---AND -
'jDIM SUBSCRIPTS

.--1-sl-NVALID ARGUMENT--ID

8WORKING BUFFER OVERFLOW
-­ _aOsARGuMENT-tO-BE- MARKE-- A.S -

UNDEFINED
I -c 0 - -NO-t- F-l-No--N k?4E - G-1AE L-t--II-S-T --

IQmARGUMENT MARKED AS INCOMPLETE'
4- A -E -D-NT -PE-FI D W-ITH -a

wj6wONLy * INPUT, REPROMPT ARGUMENT

_

EXTERNAL REFERENCES
___MfALST

MDCNTA

__
MDCNTS

__bODED4T
MDLKUP

DIAGNOSTICS

_4ERNAv.AJLS

NONE
RA--- - -

BLANK COMMON

NONE

COMMON /MDBUFF/ OBn&Wdt,)'kGEIS POOR

ODATA 1/O

COMMON /MDCoDE/

ASTRSK
BACKSL

I

7.5-3

LOCAL COMMON

NONE

7.5-4

Q D

Call MDEDIT to verify the

syntax of the edit line up
to = \@ sign and return
the data (argument ID)

< Err>on ySet

MDDTto

status flagDa,

MDEDIT error /

Call MDCNTS to locate the
argument ID in the control
table and return its
specifications

ErrNo . Is data Yes /

A/l,
2,3

YsNSet status flag for
condition encountered a e

B/3reusd

C/1i/

Set I and J
dimension

No

RETURN

MDCONT Flow Diagram

7.5-5 Page I of 3

D/1

NoNo

Call MDLKUP to locate Build data

the data for this entry

argument

SSet \ @ flagjt
Va llid

N

Call
MDCNTE
an
right to
update
of equals values

sign

(or

!DCNTA for @ sign) OGMWOF T333
PA.z 'is P(OR

MDCONT Flow Diagram (Continued) Page 2 of 3

7.5-6

Request
to print

Yes CalMDALST t
list values

/

Was
data complete

?/

No

Yes

Set status flag for

data complete and if
requested, set the
print flag in the

i

list input
Set flag to incompiij~lete
in control tableA/

Yes

MDCONT Flow Diagram (Continued)

7.5-7 Page 3 of 3

MDDEFN - Control Table Editor

MDDEFN, when developed and implemented, will support the "?" feature
of

This feature allows the user to receive an
the control level syntax. on-

These

line definition of any argument for the processor being edited.

an organized RAD data base for quick
definitions are intended to be kept in

access.

7.6-1

MDEDIT --Control Table Editor

The purpose of MDEDIT is to process the left half of an I/0 specifica­
tion (i.e., up through the = or the @) and check its syntax.

Method

Input: The input to MDEDIT is the user's input buffer after MDSCAN ­

processing and an index pointing to the beginning location in this buffer

from where processing is to begin. These values are passed through the

calling sequence.

Processing: MDEDIT verifies the order and sequence of the parameters

for the argument identification, subscripts (I-Dimension and/or J-Dimension),

"=", and "@1 values. The argument identification must follow a "\"; if it

does not, then it must be the first parameter in the buffer. Any condition

other than the above, is flagged as an error.

Single or double subscripts are valid but-they may only be foliowed

by "=". An "="means the value is the inmediate value following equals. If

there were no subscript parameters specified, an "="or "e"is valid. An "@"

means the value will be determined at execution time. If any other combina­

tions occur (i.e., an "" after a subscripted value), they-will be flagged

as errors.

Output: The output from MDEDIT consists of the argument identifier,

subscript(s) (if any), =/@ flag, index to the next field in the buffer, and

status flag for its processing. These parameters are returned through the

calling sequence.

7.7-1

___ __

_ _ _ _ _ _ _ _ _ _ _ _ _ _

USAGE
.....NtR. .MDEl1T -.......

CALL MDEDIT CBUFFBPTROARGIDSUBISUB2,EQUAT.STAT)

ARGMT I/O TYPE DIM DEFINITION

.BUr i i VARB USER'S INPUT BUFFER AFTER MDSCAN

BPTR I I I INDEX INTO BUFF

.....
.RGID -0 H --L -. ARGU.Mn--x..DENTIFIER

SUBI 0 i 1 I.DIMENsIoN, IST SUBScRIPT LIMIT
. - - -.---- - - NONE)

SUB2 0 1 I J-DIMENSION, 2ND SUBSCRIPT LIMIT
...........--(O.4F--NoNE)

EQUAT 0 1 I EQUAL/AT FLAG
.... ___E__kU-AL SIqN ENCQUJ4TEaED-­3

I1AT SIGN ENCOUNTERED

jPTR o[.L. J_iNQExI o__NAxEIELD.LtNLBUFF-

STAT 0 £ 1
 STATUS FLAG FOR MDEDIT PROCESSING

.. 010&RALR--RFtURN - __

-5BSYNTAX ERROR

EXTERNAL REFERENCES

NONE

'EXTERNAL STORAGE

.NONE ...

Q~ _ _MAN_ONF__ __ _ _ _ _ _ _ _

AT I
RCKSLHI_

EQUALS I

NAMF- .----I­

sUBS I

LOCAL COMMON I ,RTO]IBYlIffY OF THE

NONE AL A -Trrnv..

7.7-2

MOEDIT

v ry equalrmentry

*Is this >No_4_

entry equal tot

_H

MDEDIT Flow Diagram

7.7-3Page 1 of 2

Is entry No

nIsNAL PAGENoI _l !OF THEDTOIBL7

MOEDIT Flow Diagram (Continued)

7.7-4 Page 2 of 2

MDSPEC -'Control Table Editor

The purpose of MDSPEC is to return the argument specifications of a

particular argument of a control table.

Method

Input: The input to MDSPEC is the control table and the argument

number passed through the calling sequence.

Processing: MDSPEC calculates from the argument number the index into

the control table, locates, and stores data for output.

Output: The output from MDSPEC consists of the following control table

information:

Argument identifier (name)

I-dimension

J-dimension

Type of variable

Constant flag

I/O flag

Completion flag-

Print flag

@ indicator flag

.7 QT

USAGE

ENTRY MDSPEC

CALL MDSPEC (CTABIARGNUMIARGID.IDIM.JDIMTYPECONST,IOFLG,

COMPLiPRNTFGPEQUAT)

ARGMT 1I/ TYPE DIM

CTAS I I I

ARGNUM I I I

ARGID 0 I I

IDIM 0 1 I

JDIM 0 1 1

TYPE 0 1 1

CONST 0 1 1

IOFLG 0 1 1

COMPL 0 I 1
t
PRNTFLG 0

EQUAT 0 I 1

EXTERNAL REFERENCES

NONE

DIAGNOSTICS

NONE

EXTERNAL 5TORAGE

NONE

BLANK COMMON

NONE

LOCAL COMMON

NONE

DEFINITION

CONTROL TABLE

ARGUMENT NUMBER

ARGUMENT IDENTIFIER (NAME)

IST SUBSCRIPT LIMIT
I-DIMENS-ION,

J-DIMENSION, 2ND SUBSCRIPT LIMIT

TYPE OF VARIABLE

CONSTANT FLAG

i/0 FLAG

COMPLETION FLAG

PRINT FLAG

0I/ INDICATOR

RVRODOIBTh OF THE

-PAGE IS POOR

7.8-2

MDALCT - Utility

NDALCT performs the function of the utility processor ALOCAT, i.e.,

allocate an array in the storage monitor table.

Method

Input: The calling arguments to MDALCT are not set up when MDALCT is

entered; however, they are in the working buffer and MDALOC will be called.

within MDALCT to set up the arguments. The calling arguments are the Ith

and Jth dimension, type and name of the array.

Processing: MDALOC must be called to set up the calling arguments.;

however, the name of the array was specified with an @ sign denoting to MDALOC

to allocate a SMT entry for the array name. This might cause an error;

therefore, MDALCT must modify the name, which is the fourth argument, to

a = sign denoting immediate data. MDALOC is then called to set up the arguments.

The input type representation (R, I, H or F) is changed to the internal

integer form. If.the array name with any type exist in the SMT, it is deleted

and a message is printed. In any case, a new SMT entry is allocated for the

-array name, type, and size. The data area for that SMT entry is set to zero.

Output: The output from MDALCT is an entry in the SMT for the array

with the given dimension, name and type With the data area cleared. A status

flag is also output.

8.1-1

SAGE
.ENTRY-M_ A L _T..

CALL MDALCT (STATUS)

DEFINITION
ARGMT I/O TYPE DIM

0 I STATUS FLAG
STATUS

- .-.. O- .NMAL_ET UR N

>-2 COULD NOT FIND ARRAY NAME

>5 COULD NOT DELETE PREVIOUS ARRAY

------------------ ~ WZ T1 A E SAME NAME.

........
 . EXTIFRRAL REEERENCES

MDLKUP
 -­
...M D A L PC

MDFIND

__

. . . MD gLE TE __E_

MDENTR

DIAGNOSTICS

_ ___ -tLl* TYPE t(E_EI.kD.LE__. -. c

THE ARRAY NAME ALREADY EXISTED. THE SMT ENTRY FOR
THE

AND TYPER_-AS. BEE_N--DELETED.... L.-ARRAY-NAME.

._ _EX TIERN AL__ST _AGEi _'
NONE

BLANK COMMON

-- _.COH.N /MDJEEJ

VARB I/O

BOATA I
,D ISi-ZE-_

wBUF I p]pPRODUCIB1LlTOO IG. .L pAGE~IS POOR

LOCAL COMMON
 O

_ _N lN.8 .1O

8.1-2

http:EI.kD.LE

MDL KUP

Pickup data address corres­
ponding to the fourth argu­
ment from ALOCAT

Set name of array to

allocate to the value

of the data address

plus one

__I_
Mark the fourth argument
specification as = (imed­
iate data) to keep MDALOC
from allocating the array
name

Set up calling

W~as No

MDALOC RETURN

successful/,

MDALCT Flow Diagram

8.1-3 Page 1 of 3

Pick up first three argu­
ments (IDIM, JDIM, TYPE)

and determine size

requirement

Set input type represen­
tation to internal integer

form

Determine if array>

name is in SMT

Delete SHIT entry
for this array name/

dltoSet status

succesfulto -5

REUR pPODUCIBIITY OF THIA

B/3 ORiGo AL PAGE IS POOR

MDALCT Flow Diagram (Continued) Page 2 of 3

8.1-4

B/2

-MDENTR
-Build new SMT entry
and allocate storage
in SHT for array

I~Se stattuuss

an erorito-

DALCT Flow Diagram (Continued)

Page 3 of 3
8.1-5

MDCTPK - Utility.

MDCTPK isthe routine which packs a control table after it has been

split into two parts, the argument specifications and the data (see also,

MDSPLT).

Method

Input: All input to this routine is contained in the common block

MDBUFF and consists of: the length of the working buffer, an index to the

data portion of the control table, the amount (inwords) used and the control

table (inthe working buffer).

Processing: All arguments with data in the buffer are scanned beginning

with the one which appears "highest" in the buffer. Once an argument's data

has been processed (i.e., moved to the area immediately below the argument

specifications) all subsequent appearances of this argument's data are ignored.

If an argument's data isnot complete it is ignored also. Upon completion

of the pack, all data lies immediately below the argument specifications with

an argument's data appearing at most once.

Output: The output is also contained in common block MDBUFF and consists

of: the packed control table (still in the working buffer) and an index to

the first word of the argument data.

8.2-1

USAGE

ENTRY OlDCTPK

CALL MDCTPK

EXTERNAL REFERENCES

NONE

DIAGNOSTICS

NONE

EXTERNAL STORAGE

NONE

BLANK COMMON

NONE

COMMON / MDBUFF /

vARB I/O

M4DLEN I
BDATA I
OSIZE I
WBUF I

LOCAL COMMON

NONE

8.2-2

I~

Initialize scan

for argument data

Begin scan of each

argument from top down].

argumentiol

a

Noo this

ORIG]NAIJuAGE Is POO
(RETUR~~N)

RERDCBLIYO

IsGNA
 No0
 thi P G

MTDPK
 rF
u nt a
l F o
D a r m

complet

MDGETC - Utility

MDGETC is used to input data from files by file name. Each input results

in a single record being placed in a buffer supplied by the calling routine.

Method

Input: The calling routine supplies MDGETC with the name and version

of the file, an option flag specifying the specific action to be taken and

a buffer to receive the data from a sinqle logical record.

Processino: There are four options to MDGETC: open the file, input a

single record and close the file; open the file and input the first record;

input subsequent records to an opened file; and close an opened file. On

an open option MDGETC sets up the appropriate control block parameters. For

options using previously opened files the name and version are checked for

match to verify the validity of the current control blocks. Except for the

close option a record is input each time MDGETC is called.

Output: A status flag is returned indicating successful execution, read

error returned from the system services functions, opening of a non-existent

file was attempted, the logical record was truncated to the buffer length,

or improper input to MDGETC.

8.3-1

USAGE

ENTRY MDGETC

CALL MDGETC (FILNAM, VER, OPTION, LENGTH, BUFFER, STATUS)

('p ARGMT 1/0 TyPE DIM DEFINITION

FILNAM I H I SIX CHARACTER FIELD DATA NAE

VER I 1 TWO CHARACTER FIELD DATA VEQSION

OPTION I I I INPUT OPTION FLAG

is OPEN FILNAM.VER, INPUT RECORD

INTO BUFFER AND CLOSE FiLE

.2, OPEN FILNAM.VER AND INPT RECORD

INTO BUFFER

.3o INPUT RECORD FROM PREVInUSLY

OPENED FILNAM.VER

.1, CLOSE PREVIOUSLY rPENED

FILNAM.VER
LENGTH I T I LENGTH fIN WORDS) OF RECORD To BE

INPUT INTO BUFFER
BUFFER 0 F LENGTH cONTENTs OF INPUT RECORD
STATUS 0 I 1 COMPLETION STATUS

O0, NORMAL COMPLETION
-I, FILNAM.VER NOT FOUND

a-2, RECORD TRUNCATED TO LEGTH

WORDS ON INPUT
w-30 READ ERROR

s-+ INVALID OPTION

.-S, FILNAMVER OF OPTION 3 OR 4 DOES
NOT MATCH THAT OF PREVYOUS CALL

EXTERNAL REFERENCES

ECLOSS TO CLOSE FILES

ELRSRS TO READ LOGICAL RECORDS

EOPENS TO OPEN FILES

FWKBKS TO GENERATE WALK BACKS AND TERMINATE EXECUTInN

MDCONV TO CONVERT FROM FIELD DATA TO ASCII

RESTRICTIONS

ALL INPUT FROM A FILE DURING ONE OPEN MUST BE ACCOMLISHED

VIA MDGETc.

ONLY ONE OPEN FILE AT A TIME IS SUPPORTED WITHIN MDcETC

DIAGNOSTICS

NONE

EXTERNAL STORAGE

THE REQUESTED 1/0 ACTIVITIES ARE ACCOMPLISHED ON TH F

DESIGNATED FILE

BLANK COMMON

NONE

LOCAL COMMON

NONE

REtPRODUCIBIIITY OF THB
ORIGINAL PAGE IS POOR

8.3-2

Save registers

for return logic

FWKBK$

Corrct o Produce message,

12erof trace back and

arguments t at ti

Yes

sttatus to zero-

YesYe

MDCOH{V

Convert name and

version to ASCII

Point to buffer, Yes

set length and

clear return code

.4/ B/22

HIDGETCFile Input Utility Routine Functional Flow
-

8.3-3 Page 1 of 2

Yes Option
3

No

Open file

error

Input record

error

Yes

Yes

YesDUI~hT

status to -2

oto

2 or 3

OFpen

1e0

110 File?

et o _tetuurtn

trunaion

Yes Cls

Yes N

.. Set rturn

REPRODUOIBILIY OF TJ

f)-T(--T-AT PALGE IS PO0V

MOGETCFlow riagran (Continued) Page 2 of 2
8.3-4

MDLIST - Utility

MDLIST is called by the submonitor (MDSMON) to list the various data

elements (command tables, control tables and data arrays).

Method

Input: All input is through the calling sequence and consists of: -a

buffer containing the data to be listed, the-type designator of the data

element, the size (inwords) of the data and the data's alphanumeric

identifier.

Processing: If the type designator indicates a data array, the type

isfurther broken down to determine if the array should be listed in octal,

real, integer or Hollerith format. After performing the indicated list,

control is returned to the submonitor.

Ifthe type indicated a control table, all argument specifications are

listed. Any complete argument also has its current values listed. Control.

is then returned to the submonitor.

If a command table isto be listed, a heading is printed out and the

routine MDCMTL is called to.perform the list. Once again, control is returned

to the submonitor.

Output: There is no output from MDLIST other than the requested-listing.

8.4-1

USAGE
ENTRY MDLIST

CALL MDLIST (BUFFTyPE,SIZENAME)

ARGMT IO TyPE DIM DEFINITION

BUFF I SIZE BUFFER CONTAINING DATA ELEMENT TO

TYPE
SIZE
NAME

I
I
I

I
I
I

I
I
I

BE LISTED
TYPE DESIGNATOR OF DATA ELEMENT
LENGTH IN WORDS OF DATA ELEMENT
ALPHANUMERIC DESIGNATOR OF UATA
ELEMENT

EXTERNAL REFERENCES

MOALST

MDCMTL

MDLSTH

MDLSTI

MDLSTO

MDLSTR

MDSPEC

DIAGNOSTICS

NONE

EXTERNAL STORAGE

NONE

BLANK COMMON

NONE

LUCAL COMMON

NONE

8.4-2

MDLISTI

Command
Table

MDCMTL
List the
commands

Cnrlt
Table

Determine number
of arguments, size
of specifications,
whether complete

Arra

Obtain speci­
fications for
an argument

Print the
specifications
for this argu­
ment

pritedRXIhODJOIBIh1IY op THE
Yes ORIGINAL PAGE IS POOR

< MHDALST

Call once per
argument to
list its data

RETURN

MDLIST Flow Diagram

8.4-3 Page l of 2

A/i

IInteger Hollerith

IIDLSTI MDLSTH

List the data> List the data

in integer in Hollerith
fo rmat•format

Real

MDLSTR
List the data

n real formati
inra omin

CRETURN

MDLIST Flow Diagram (Continued)

IDLIST Flow Diagram (Continued)

8.4-4

4 Other

MDLSTO

List the data

octal format/

Page 2 of 2

MDLKUP - Utility

MDLKUP is the routine used to locate the data portion of an argument

in a control table.

Method

Input: The input to MDLKUP is through the calling sequence and consists

of: the argument label of the data to be found, the buffer containing the

control table, an index to the beginning word of the data portion of the control

table and the length (inwords) of the control table.

Processing: Each data sets identifier is compared to the input argument;

label. When a match is found, the search is terminated and the current

location is returned. If no match was found, an error indication is returned

to the calling routine.

Output: All output is through the calling sequence and consists of the

data's location in the control table and a status flag. If the status flag

is non-zero the location indicator has no meaning.

2.5-1

UsAGE

ENTRY
MDLKUP

CALL MDLKUP (ANUMWBUFIBDATAILDATADATADD.STATUS)

ARGMT 1/O TyPE DIM DEFINITION

ANUM I
WBUF I
BOATA I

LDATA I

DATADD a

STATUS 0

EXTERNAL REFERENCES

NONE

DIAGNOSTICS

NONE

EXTERNAL STORAGE

NONE

BLANK COMMON

NONE-

LOCAL COMMON

NONE

I I ARGUMENT LABEL TO BE LOCATED

I VARB BUFFER CONTAINING THE CONTROL TABLE

I I BEGINNING OF THE DATA PORTION OF THE

BUFFER

I I LENGTH(IN WORDS) oF THE BUFFER

I I LOCATION'OF THE ARGUMENT DATA

I I STATUS FLAG; =ORETURN OK

*-IARGUMENT DATA NOT

FOUND

RITRODUcQMLmj OF THE
ORIGINMAL PAGE IS POOR

8.5-2

MDLKUP

1:E

Set location

indicator to

first word
of data

1No

Increment location

indicator to next

argument

Set status

indicating data
not found

MDLKUP Flow Diagram

8.5-3

MDLSTH - Utility Support Routine

This routine will list arbitrary amounts of Hollerith data.

Method

Input: All input is through the calling sequence and consists of:

the argument identifier of data of the data being listed, an array contain­

ing the data and the amount of data (inwords) to be listed.

Processing: Ifpossible,all data isprinted on one line; if not, then

there are 10 words per line. The argument identifier appears on the first

line only.

Output: There is no output from this routine other than the listing

of data for the user.

-8.6-I

USAGE

ENTRY mDLSTH

CALL MDLSTH(NAMEARRAY.LEN)

ARGMT 1/0 TYPE DIM DEFINITION

NAME

ARRAY
LEN

I
I
I

I
I
I

I
VARB
I

ARGUMENT NAME OF THE DATA TO BE
ARRAY CONTAING THE DATA TO BE LI'STED

AMOUNT(IN WORDS) TO BE LISTED

LISTED

EXTERNAL REFERENCES

NONE

DIAGNOSTICS

NONE

EXTERNAL STORAGE

NONE

BLANK COMMON

NONE

LOCAL COMMON

NONE

8.6-2

MDLSTI - Utility Support Routine

This routine will list arbitrary amounts of integer data.

Method

Input: All input is through the calling sequence and consists of:

the argument identifier of data of the data being listed, an array contain­

ing the data and the amount of data (inwords) to be listed.

Processing: If possible,all data isprinted on one line; if not, then

there are 6 words per line. The argument identifier appears on the first

line only.

Output: There isno output from this routine other than the listing

of data for the user.

8.7-1

USAGE

ENTRY MDLSTI

CALL MDLSTI(NAMEARRAYLEN)

ARGMT 1/O TYPE DIM DEFINITION

NAME I I I ARGUMENT NAME OF THE DATA TO BE LISTED
ARRAY I I VARB ARRAY CONTAING THE DATA TO BE LISTED
LEN I I I AMOUNT(IN WORDS) TO BE LISTED

EXTERNAL REFERENCES

NONE

DIAGNOSTICS

NONE

EXTERNAL STORAGE

NONE

BLANK COMMON

NONE

LOCAL COMMON

NONE

8.7-2

MDLSTO - Utility Support Routine

This routine will list arbitrary amounts of octal data.

Method

Input: All input is through the calling sequence and consists of:

the argument identifier of data of the data being listed, an array contain­

ing the data and the amount of data (inwords) to be listed.

Processing: If possible, all data is printed on one line; if not, then

there are 4 words per line. The argument identifier appears on the first

line only.

Output: There is no output from this routine other than the listing

of data for the user.

8.8-1

USAGE

ENTRY MDLSTO

CALL MDLSTO(NAMEARRAYLEN)

ARGMT l/0 TyPE DIM DEFINITION

NAME

ARRAY
LEN

I

I
I

I I

FREE VARB
I I

ARGUMENT NAME oF THE DATA TO

ARRAY CONTAING THE DATA TO BE
AMOUNT(IN WORDS) TO BE LISTED

BE

LI

LISTED

STED

EXTERNAL REFERENCES

NONE

DIAGNOSTICS

NONE

EXTERNAL STORAGE

,NONE

BLANK COMMON

NONE

LOCAL COMMON

NONE

8.8-2

MDLSTR - Utility Support Routine

This routine will list arbitrary amounts of real data.

Method

Input: All input is through the calling sequence and consists of:

the argument identifier of data of the data being listed, an array contain­

ing the data and the amount of data (inwords) to be listed.

Processing: If possible, all data is printed on one line; if not, then

there are 4 words per line. The argument identifier appears on the first

line only.

Output: There is no output from this routine other than the listing

of data for the user.

8.9-1

USAGE

ENTRY MDLSTR

CALL MDLSTR(NAMEARRAYLEN)

ARGMT I/0 TYPE DIM DEFINITION

NAME I I I ARGUMENT NAME OF THE DATA TO BE LISTED

ARRAY I R VARB ARRAY CONTAING THE DATA TO BE LISTED
LEN I I I AMOUNT(IN WORDS) TO BE LISTED

EXTERNAL REFERENCES

NONE

DIAGNOSTICS

NONE

EXTERNAL STORAGE

NONE

N
BLANK COMMO

NONE

LOCAL COMMON

8.9-2

MDPUTC - Utility

MDPUTC is used to output data to files by file name. Each output gen­

erates a single record from a buffer supplied by the calling routine.

Method

Input: The calling routine supplies MDPUTC with the name and version

of the file, an option flag specifying the specific action to be taken and a

buffer of data to be output as a single logical record.

Processing: There are four options to MDPUTC: open the file, output

a single record and close the file; open the file and output the first record;

output subsequent records to an opened file; and close an opened file. On an

open option MDPUTC sets up the appropriate control block parameters. For

options using previously opened files the name and version are checked for

match to verify the validity of the current control blocks. Except for the­

close option a record is created in the file each time MDPUTC is called.

Output: A status flag is returned indicating successful execution,

write error returned from the system services function or improper input to

MDPUTC.

8.10-1

USAGE
ENTRY MDPUTC

CALL MDPVTC (FILNAM, VER, OPTION, LENGTH. BUFFER, STATUS)

ARGMT I/0 TyPE DIM DEFINITI'ON

FILNAM I H I sIX CHARACTER FIELD DATA NAME
VER I H I TWO CHARACTER FIELD DATA VEpSION
OPTION I I I OUTPUT OPTION FLAG

=to OPEN FILNAM.VER, OUTPUT BUFFER
AS A SINGLE RECORD AND rLOSE FILE

=2, OPEN FILNAM.VER AND OUT0 UT BUFFER
=3, OUTpUT BUFFER INTO PREV;OUSLY

OPENED FILNAM.VER
u49 CLOSE PREVIOUSLY OPENED

FILNAM*VER
LENGTH I I I LENGTH (IN WORDS) OF RECORD TO BE

OUTPUT FROM BUFFER
BUFFER I F LENGTH ARRAY CONTAINING LENGTH W0RMS TO BE

OUTPUT AS A SINGLE LOGICAL RECORD
INTO FILE FILNAM.VER

STATUS 0 1 1 COMPLETION STATUS

00, NORMAL COMPLETION
*-3, WRITE ERROR
* INVALID OPTION
m-S FILNAM.VER OF OPTION 3 OR 4 DOES

NOT MATCH THAT OF PREVIOUS CALL

EXTERNAL REFERENCES

ECLOSS TO CLOSE FILES

ELRSWS TO WRITE LOGICAL RECORDS

EOPENS TO OPEN FILES

FWKBKS TO GENERATE WALK BACKS AND TERMINATE EXECUTInN

MDCONV TO CONVERT FROM FIELD DATA To ASCII

RESTRICTIONS

ALL OUTPUT TO A FILE DURING ONE OPEN MUST BE ACCOMPI ISHED

VIA MDPUTCp

ONLY ONE OPEN FILE AT A TIME 15 SUPPORTED WITHIN MD 0 UTC.

DIAGNOSTICS

NONE

EXTERNAL STORAGE

THE REQUESTED I/O ACTIVITIES ARE ACCOMPLISHED ON THr

DESIGNATED FILE

BLANK COMMON

VARB 1/0

UCs 0

LOCAL COMMON

2oIGDI PNGE ISpO
NONE ISTOi"L,-or

8.10-2

Save registers

for return Ioic

s t
sFtKBK­rfor
oProduce

r ttrade

numbe message,

back and
? ~terminate execution

Option NO Set return

I o 4 sttu totu to4-

Yess

versioatto
ASCII

N
oneti nm Yeanmdnd
 etr
vesinsaeSe
o
3eso

Point to buffer, Yes

set length and

clear return code

A//2

HDPUTC - File Output Utility Routine Functional Flow

8.10-3 Page 1 of 2

A/1 B/i C/I

Yes Option
3

No

Open file

error

Yes or un30 oren= G SP

St r Fie SOutputUt urn i

erruor ze2f

I CFle til o utn ucinlFo
utpt N Cniud

file?
8C10-e f

MDQUIT - Utility Routine

This routine performs the QUIT directive and determines if the user

desires to save a SMT.

Method

Input: There is no input to this routine.

Processing: Upon entry, the user is prompted to determine if he desires

to save the SMT. If he does not, control is returned to MDSMON where a STOP

statement is executed to terminate the session. If he does desire to save

the SMT, all entries prefixed by $ and % are deleted, these entries residing

in the IMS data base. The entries, &CMDTB and &CONTB, are deleted also.

Control is now passed to MDSMTW for the writing of the SMT to a file. Upon

return from MDSMTW, control is returned to MDSMON where execution is terminated.

Output: This routine has no output.

8.11-1

USAGE

ENTRY MDQUIT

CALL MOQUIT

EXTERNAL REFERENCES

MOELET

MDPACK

MDPRMT

MOSHTW

DIAGNOSTICS

I/0 ERROR WHILE PROMPTING

A SYNTAR ERROR HAS BEEN ENCOUNTERED WHILE DrTERMINING

IF A FILE IS TO BE SAVEno

EXTERNAL STORAGE

NONE

BLANK COMMON
VARB 1/O

DBSTRT I
NTRY I

COMMON / MDCODE /

VARB I/O

NAME I

LOCAL COMMON

NONE

REPRODUCIBILITY OF THE

ORIGINAL PAGE IS POOR

8.11-2

; MDQUIT

Does the No
user want to saveRETUR

Delete all $ and %

entries in the SHT

Pack users data

areas (core & rad)

MDS

Write out

data area

if
OBEY

Equate unit ll to

systems default

unit

RETURN

MDQUIT Functional Flow Diagram

8.11-3

MDSMTW - Utility Support Routine

NDSMTW is a routine with two entry points. One causes the current SMT

to be written to a file. The other causes a user specified file to be read

into the SMT.

Method

Input: A buffer is passed through the calling sequence containing the

file name to be read from or written to. If no name is present the first

word of the buffer is -1.

Processing: If the user desires to save a file, either through the SAVE

directive or the QUIT directive, the MDSMTW entry point is called. A check

is made for the presence of a file name and, if not present, the user is asked

to provide one. The user must input a file name. The firs record of the

file, containing information concerning where the data starts, how much data

is present and the maximum size allowed, is written out. The data is then

packed and written as the second record. The file is now closed. While pack­

ing the data, there is a possibility of destroying part of the SMT in core.

Therefore, any portion that was destroyed is restored to the condition itwas

in upon entry. Control is now returned to the calling program.

If the user desires to read a previously saved file, either at initial­

ization time or with the RECALL directive, the MDSMTR entry point is called.

Once again, a check is made for the presence of a file name and, if not

present, the user is asked to provide one. If the user is specifying a file

saved under another access code, the access file (MDACCD) is read into the

working buffer to obtain the version the file was saved with. The first

record of the desired file is read into blank common. The record contains

information regarding the attributes of the data. If the file will not fit in

the current configuration the user is informed and the reading process

terminated. Otherwise, the second record is read into blank common, moved

to the bottom and each entry's address field is adjusted. The file is now

closed and control is returned to the calling routine.

Output: There is no output from either entry point (other than the file

read/written).

8.12-1

USAGE REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

CALL MDSMTW(INPUT)

ARGMT 1/0 TYPE DIM
 DEFINITION

INPUT I I VARB
 BUFFER CONTAINING THE DIRECTIVE

ENTRY MDSMTR

CALL MDSMTR(INPUT)

INPUT I I VARA
 BUFFER CONTAINING THE DIRECTIVE

EXTERNAL REFERENCES

MDGETC

MDPRMT

MOPUTC

MOSPLT

DIAGNOSTICS

**COULD
NOT OPEN AND READ ACCESS FILE*.

THE USER HAS SPECIFIED A SECONDARY ACCESS CODE OTHER

THAN HIS OWN. IN ATTEMPTING TO READ THE FILE OF

ACCESS CODES
AN ERROR OCCURED.

o.. COULD NOT OPEN AND READ w STATUs a
THE USER SPECIFIED FILE COULD NOT BE OPENED AND READ

INTO MEMORY,

soa COULD NOT
OPEN AND WRITE TO .. o*.. v STATUS a so*
THE USER HAS ATTEMPTED TO SAVE AN EXISTING FILE. AN

ERROR OCCuRED WHEN THE wRITE
WAS ATTEMPTED.

'a. DATA 	BASE NOT SAVED/RECOVERED
ANY I/O ERROR IN READING OR WRITING A FILE HAS THIS
MESSAGE APPENDED TO IT.

so ERROR IN CLOSING o....STATUS.... INTEGRITY OF DATA

BASE IS QUESTIONABLE

WHILE ATTEMPTING TO CLOSE THE
USER SPECIFIED FILE AN

ERROR OCCURED.(READING ONLY)

o I/O ERROR IN WRITING OR CLOSING *o*,
 STATUS-...

INTEGRITY OF FILE IS QUESTIONABLE

SAME AS PRECEDING EXCEPT WRITE ONLY

0.. LENGTH OF SAVED DATA BASE (#,s.)
 EXCEEDS MAXIMUM (.ee.) OF

CURRENT CONFIGURATION,

AN ATTEMPT HAS BEEN MADE TO
RECOVER A DATA AREA THAT

IS TOO LARGE FOR CURRENT SYSTEM SIZE

00 READ ERROR IN READING DATA PORTION OF .,., ,o STATUS=,

AN ERROR HAS OCcURED WHEN READING THE SECOND RECORD
OF A TWO RECORD FILE,

a.. READ ERROR WHILE READING RESPONSE
AN ERROR HAS OCCURED WHILE PROMPTING FOR THE USER'S
FILE NAME

@-SECONDARY CODE goose, NOT FOUND

THE USER HAS ATTEMPTED TO READ A FILE WITH AN
INVALID

ACCESS CODE

"'$SYNTAX ERROR--FILE NAME
ONLY IS ALLOWED

THE USER HAS ATTEMPTED TO SAVE A FILE TO
AHICH HE 	HAS

APPENDED AN ACCESS CODE

"**SYNTAX ERROR--TRY AGAIN-**

THE USER HAS MADE
A SYNTAX ERROR WHEN TRYING TO

RECALL'A FILE.

8.12-2

EXTERNAL STORAGE

MOACCD

VARIOUS OTHER FILES

BLANK COMMON

VARB 1/O

DBADDR I

DBMAX I

OBSTRT I

NTRY I

ACCCDE I

BDGNUM I

NENTR I

VERS I

COMMON / MDCODE /

VARB I/0

NAME I

EOL I

COMMON / MDBUFF /

VARB I/0

MDLEN I

BDATA I

OSIZE I

WB I

LOCAL COMMON

FILE CONTAINING ACCESS CODES

USER SPECIFIES THE NAME OF THE FILE

IN EXTERNAL STORAGE CONTAINING HIS

DATA

8.12-3

ENTER (1 DSNI and IDSMtR)

YesFile
name

input

No

MDPRIT

Piropt
for nlame

Output error Ile-- romt'

message OKcef ,.

Outptcerorte Filent

Witeseout

ftrecord

flOSlITU,FlOW Diacram Paqe iof 4

8.12-4

A/I

FIDPUTC

No
 'PT

Yes

Secondyretordn t

SOutput error NO 'COE

Messaqe scesu

Insure integrity of

original condition

RETURN

!IDSTIff Flow 	Diagram Page 2 of 4

8.12-5

messeone

recordn

•Yes

N

. Output error
message

NOes ga
acs

Read seiond
record

_ Output error N 1E

megsaqeofSI

tooRDO
o~mm

T
P~a

OF THe
PNo

lID~ffWlow iagrm P ge3 f

Read econ

MDSPLT

Move the data

Sortion to

ottom of OR

Adjust addr. field

of each SMITentry
and initialize DB

pointers

Close file

Output error No CLOSE

message successful

Yes

FDSIFW Flow Diagram Page 4 of 4

8.12-7

MDSPLT - Utility Routine

MDSPLT will take a buffer and split it into two parts. It is primarily

used by MDCNT to separate the argument specifications and the data and by

MDCMT to separate the commands and the temporary edits.

Method

Input: All input to MDSPLT comes through the calling sequence and con­

sists of a buffer containing the area to be split, the length (inwords) of

the area, the size (inwords) of the array to be split and an index to the

first word of the array to split off.

Processing: The buffer is separated into two parts. Any unused area

is zeroed. The index to the array split off is calculated for output.

Output: All output is through the calling sequence and is the buffer

containing the split array and an index which points to the first word of

the array split off.

8.13-1

U SAGE
ENTRY MDSPLT

CALL MDSPLT (hBMDLENSIZEBDATA)

ARGMT

WB
MDLEN
SIZE

BOATA

I/O

1/O
I
I

I/0

TYPE DIM

I VARB
I I
I I

I 1

DEFINITION

RUFFER cONTAING DATA TO BE cPLIT

SIZE(IN WORDS) OF WB
SIZE(IN WORDS) OF THE PORTInN OF

TO BE SPLIT AWAY
INDEX To THE PORTION oF THE DATA

BE SPLIT AWAY

DATA

TO

EXTERNAL REFERENCES

NONE

DIAGNOSTICS
NONE

EXTERNAL STORAGE
NONE

BLANK COMMON

NONE

LOCAL COMMON

NONE

8.13-2

MOTOC - Utility

This routine will perform the TOC directive and, in doing so, generate

a listing of the contents of the SMT.

Method

Input: There is
no input to this routine.

Processing:
 Upon entry, the data areas are packed (MDPACK). If the

SMT is empty, the user is informed of such and informed of the available size.

Control is then returned to the submonitor (MODSMON).

If not empty, each SMT entry is listed. The list for each entry

includes: the entry's alphanumeric name, its type, its size, its
I-dimension,

and its J-dimension.
After all entries are listed, a message is printed

informing the user of how large the SMT area is and how much of this is

currently being used. Control is
now returned to MDSMON.

Output: This routine has
no output other than the user requested listing

of the SMT.

8.14-1

UsAGE
ENTRy
MOTOC

CALL MDTOC

EXTERNAL REFERENCES

MDPACK

DIAGNOSTICS

*e. SiT EMPTY

THE SmT To BE LISTED CONTAINS NO ENTRIES

EXTERNAL STORAGE

NONE

BLANK COMMON
VARB I/0

DBADDR I
DBMAX I

DBSTRT I

NTRY I

LOCAL COMMON

NONE

8.14-2

MDTOC

MDPACK

Pack users data

areas (core & rad)

IsYes Output message

theSM indicatinq the

empty T is empty
7

No

Extract type, name,

IMS type, size and

I and J dimensions

from the SMT

Write a message with

above information

Compute amount of SMlT

available and amount

used -- print these

values

RTURNG

MDTOC Functional Flow Diagram

8.14-3

MDUTIL - Utility Support Routine

HDUTIL performs the utility directives DUMP and DELETE. As more direc­
tives are implemented in the prototype, MDUTIL will take on the expanded

role of performing them also.

Method

Input: All input is through the calling sequence and is: the buffer

containing the directive and an indication of which-directive has been

entered.

Processing: If the DUMP directive has been entered, it is scanned for

correct syntax and the presence of an optional type flag. If the flag is present

the data is listed by this type. If not present, the data is listed by its

internal type. After performing the dump, control is returned to MDSMON.

If the DELETE directive has been entered, the syntax is verified and

the data area deleted. The user is informed of a successful deletion or of

the fact the area does not exist. In either case, control is returned to

MDSMON.

Output: There is no output from MDUTIL other than what the user obtains

by doing the directive.

8;15,I

USAGE

ENTRY MDUTIL

CALL MDUTIL(DIRECTINPUT)

ARGMT 1/0 TYPE DIM DEFINITION

DIRECT

INPUT

I

I

I

I

I

VARB

NUMERICAL VALUE INDICATING

DIRECTIVE JUST ENTERED
BUFFER CONTAING THE DIRECTI

THE

VE

EXTERNAL REFERENCES

MDELET
MDGET
MDLIST

DIAGNOSTICS
9.' COULD NOT FIND

THE SPECIFIED ARRAY TO BE DUMPED COULD NOT BE FOUND
IN THE SMT

. DeCOULD NOT READ
THE ARRAY TO BE DUMPED COULD NOT BE READ

* 	 INVALID SYNTAX

THE DIRECTIVE CONTAINED A SYNTAX ERROR

MDUTIL EXECUTED

A DIRECIVE NOT YET IMPLEMENTED IN THE MONITOR HAS

BEEN REQUESTED* CONTROL IS RETURNED TO MDSMON WITH

NO ACTION TAKEN,

EXTERNAL STORAGE

NONE

BLANK COMMON

NONE

COMMON / MDCODE /

VARB I/O

NAME I RE RODIBJO$fz OF THE
UPPARW II I,,mALsPOOR
COMMA

COMMON / MDBUFF /

VARB 1/0

MDLEN I

wB

LOCAL COMMON

NONE

8.15-2

?IDUTII.

Di rective

elete Dump

Yes

N J
Typterpeio n

presntag

Yes

o Use data's
internal tyne

entr

i Out put

1EDetermine option
and adjust data type

N ea

No

DeI Output error
successfulem8e15-3

error

message ra

oto

Inomuer
ofdlton "Get

< MDGET

the dt
from thST

message scesu

List the
data

G D

MDUTIL Flow Diagram

8.15-3

SEARCH - Binary Search Routine

SEARCH performs an examination of an ordered (sorted) input array to

detect the presence of a specified entry. Examination of multiple rows of

the array on a prioritized basis is provided.

Method

Input: SEARCH accepts as input an ordered array of data and a column,

or item, to be compared to the columns of the array. The comparison is based

on a prioritized set of search keys also input.

Processing: The technique used to examine the input array is
a binary

search, also known as search by bisection.

Output:
 The column number of a match or a flag indicating no match is

returned.

8.16-1

USAGE

ENTRY SEARCH

CALL SEARCH (TAB, Il, JO, NKLY, KEY. FIND, LuC)

ARGMT 1/0 rYPE DIM DEFINITION

TAB 1 1H 10,J0 ARRAY SORTED BY KEY ROWS TU BE

SEARCHED IN THOSE RuNS FuR THE

SPECIFIED ENTRY

ID I I I NUMBER OF ROWS IN TAb ANU LENGTH oF
FINo

JO I I I NUMBER OF COLUMNS IN TAB
NKEY I I NUMBER OF SEARCH KEYS IN KEY

KEY I I NKEY SEARCH KEYS. ROW NUMBERS OF N0S OF
TAB AND ENTRIES OF FIND TO BE

COMPARED (PREFIXED ITH MINUS SIGN TO

DESIGNATE ALPHABETIC COMPARISON).
THE SEQUENCE OF VALUES IN KEY ESTAB-

LISHES THE SEARCHING PRIORITY, IL.,

KEYCI) INDICATES THE PRIMARy, KLY(2I
THE MAJOR, ETC.

FIND I I,H .1D COLUMN TO BE COMPAREU TO CULUMNS OF

TAB IN THE KEY ENTRILS

LOC 0 I COLUMN NUMBER OF TAB MATCHING FIND
IN THE KEY ENTRIES N ZERO IF NOT

FOUNU

EXTERNAL REFERENCES

NONE

RLSTRICTIONS

THE INPUT ARRAY OF MUST BE ALGEBRAICALLY AND/OH ALPHABETIC-

ALLY ORDLRED IN THE KEY ROWS TO BE SEARCHED.

MUST CORRESPOND TO
THE ABSOLUTE VALUES OF THE SEARCH KEYS

ROW NUMBERS OF THE INPUT ARRAY

DIAGNOSTICS
IMPROPER VALUE o.... FOR SEARCH POINTER

Kk. YfS
THE ABSOLUTE VALUE OF THE INDIcATE ELEMENT OF

ZERO,

EXTERNAL 2TORAGE

NONE

BLANK COMMON

LOCAL COMPION
NONL

OF ThRREPRODUCBILITY
ORICINAL PAGE IS POOR

8.16-2

Compute maximum number
of comparisons and
initialize bounds to
ends of array

Calculate midpoint for
use in comparison and
initialize to first
search key

~Midpoint

latch Prom too high

itch coarkeyfsabove compare point below compare point

SYesT

Reunpointer to
matching entry

Signal matchnot found
Yes Maximum

cmae
No

Page 1 of 1

SEARCH Functional Flow Diagram

8.16-3

SORT2 - Array Sorting Package

SORT2 and SORTI provide very fast algebraic and/or alphabetic sorting

of arrays based on any number of sort keys. The sorting is based on the

contents of specified rows of the input array.

Method

Input: The primary inputs are the array to be sorted and an array of

sort keys designating the rows on which to base the sort, their priority

(order of sorting) and which are to be sorted algebraically and which alpha­
betically. The size of the array and number of sort keys is also specified.

Entry point SORT2 further provides for the parallel manipulation of an

additional array of data during the sorting of the input array, assuming a

relationship exists between the entries of the two arrays.

Processing: The sorting algorithm is a variation of a splitting technique

described by R. C. Singleton, Communication of the ACM, Volume 12/Number 3/

March 1969, p. 85. SORT2 is an extension and generalized implementation of

the technique.

The method is the sort analogy to a binary search. First the array is

split and reorganized such that all "low" values are placed in the top half

of the array and all "large" values in the bottom. Indices bounding the

bottom are then saved. The top half is then split and again all "low" values

are moved to the top and "large" values to the bottom. Again the indices

of the bottom are saved. The process is continued until a top to be split

contains no more than three values. These are arranged in order and splitting

continues by retrieving a bottom section from the index queue on a last in

first out basis. Queue space for the bottom indices is related to the number

of entries by the expression

m = 2Q+2+ 2Q - 1

where

m is the maximum number of entries to be sorted

Q is the number of index pairs for which storage is provided

8.17-1

Q is 14 inthe present implementation which permits an array of up to 81,919

columns to be sorted.

The technique is illustrated in the following example and the accompany­

ing flow diagram.

1

2

3 ---Split 3

4 Queue 3

6 ---Split 2

7

8

9 Queue 2 ---Split 4

10 Queue 2

11 Number of splits = 7

12 ---Split I Required queue spaces = 3

13

14

15 ---Split 6

16 } Queue 2
1
17

18 Queue 1 ---Split 5

19
 i20

21 Queue 1 ---Split 7

22 }Queue 1

/23

Example of Splitting and Queueing an Array of 23 Entries

8.17-2

Output: The output from SORTI and SORT2 is the sorted input array.

SORT2 also outputs the associated array which was operated on in parallel

with the primary array.

8-17.3

OF THEREPRODUCIBILITY
USA E 	 PAGE IS POOR

UgE1R SORIGINALENTRY SORTZ

CALL SORT2 (Al, 1a Js NKEYS, KEYS, Big IBA 0 , BO)

ARGMT I/O TYPE DIM DEFINITION

Al I I,H IAJ ARRAY TO BE SORTED ACCORDING TO TwE

DATA IN KEYS
IA I j NUMBER OF ROWS IN Al AND AC

J I I NUMBER OF COLUMNS IN Al, 6I, AO AND
BO

NKEyS I I NUMBER OF SORT KEYS IN KEYS
KEYS I I NKEYS SORT KEYS. ROW NUMBERS OF ROWS OF Al

ON WHICH TO SORT IPREFIXLD WITH MINUS
SIGN TO DESIGNATE ALPHABETIC SORT),
THE SEQUENCE OF VALUES IN KEYS ESTAb-

LISHLS THE SORTING PRIORITY, lE.,
KEYSCI) INDICATES THE PRIMARY,
KEYS(2) THE MAJOR. ETC-

BI I FREE 18#J ARRAY TO BE OPERATED ON IN PARALLEL
WITH Al

Iii I I NUMBER OF ROVS IN B1 AND BO
AD 0 IH .AJ SORTED ARRAY At
BO 0 FREE IB,J SORTED ARRAY BI

ENTRY SORTI

CALL SORTI (A, IA' J. NKEYS, KEYS, AO)

ARGMT 1/0 TYPE DIM 	 DEFINITION

Al I IH IA,J 	 ARRAY TO BE SORTED ACCORDING TO THE

DATA IN KEYS

IA I I I NUMBER OF ROWS IN Al AND A0
J I I I NUMBER OF COLUMNS IN Al AND AU

NKEYS I I NUMBER OF SORT KEYS IN sEYS
KEYS I I NKEYS 	 SORT KEYS, ROW NUMBERS OF ROWS OF Al

ON WHICH TO SORT (PREFIXED WITH MINUS

SIGN TO DESIGNATE ALPHABETIC SORT).

THE SEQUENCE OF VALULS IN KEYS ESTAB-

LISHES THE SORTING PRIORITY. 1E,,

KEYSI) INDICATES THE PRIMARY

KEYS(2) THE MAJOR, ETC.

AO 0 ItH IA,J 	 SORTED ARRAY At

EXTERNAL REFERENCES

NONE

RESTRICTIONS

THE ABSOLUTE VALUES OF KEYS MUST BE BETWEEN I AND J INCLUSIVE

THE MAXIMUM NUMBER OF COLUMNS (VALUE OF J) wHICH CAN BE

ACCOMODATED IS PRESENTLY DEFINE AS 40959.

DIAGNOSTICS
INSUFFICIENT INDEx STACK STORAGE FOR SORTING .. ,*. ELEMENTS

AS PRESENTLY CONFIGURED A QUEUE FOR SAVING SECTIONS TO
BE SORTED WILL ONLY ACCOMODATE 40959 COLUMNS OF At*

NON-VALID VALUE ,.e,. FOR SORT KEY .*.,

THE ABSOLUTE VALUES oF THE SORT KEYS MUST CORRESPOND TO

8.17-4

THE ROW NUMBERS OF Al,

EXTERNAL STORAGE

NONE

BLANK COMMON

NONE

LOCAL COMMON

NONE

8.17-5

Enter
SOR~n

Ltve input arrays

Into output arrays

Sort F)O
key values

valid

Yes

Lo ate aipoint (f)
and order first (1F),
Itan las LI)points

aier acally

Value * No
value of 11betwee

F+1 and 1-1
?

Yes

Value l

value of II betwee

if+1 and L-1

'/

Yes

Interchange two
Identified values

Continue fr u
oints of

interchange

non-valid
valuege:. Sto

I-

Insufficient
index stack
storage..

Yes

Value a No F to L Yes Ousue No Qlueue lower half of
value of II betwee range

4 full section as nemsection
4-1 and L-I point by storinq points K41

I and L

Yes I

Select new midpoint by Reset L t 11-1
reordering Identified,
F and N points

Sectio Yes getrieve new F
queued for and L points

sortingfromqueue
Select new midoint by
reordering identified,
11and L points

Return

SORTI and SORT2 Functional Flow Diagram Page 1 of 1

8.17-6

.REPRODUOCBITh OF THt
ORIGIANL PAGE IS POOR

DCTMOD - Library Maintenance

DCTMOD is a stand alone Fortran program to delete processors from the

MDAS catalog and to modify default control tables of processors in the MDAS

catalog.

Method

Input: The processor catalog file (MDTABL.MD) to have modifications and

deletions must reside on unit one.

Processing: When executed, DCTMOD brings into memory the processor

catalog file from unit one. The INFONET system routine OBEY is.used to open

the file and equate the file MDTABL.MD to unit 1. If there are new processor

entries indicated by the catalog key, a message is printed stating that the

catalog may not be modified. If there are new processor entries, they must.

be put in the catalog previous to a DCTMOD execution.

After the catalog is in memory, the user is prompted for each processor

to be deleted. For each name input, a search of the catalog-(PROTAB) is made.

If no entry was found, the user is requested to input another name. Otherwise

the PROTAB entry corresponding to the name is deleted and the table is then

packed.

After the user has indicated by pressing the carriage return that all

desired processors have been deleted, the user is prompted for each processor

name to modify the default control table. For each name input, a search of

PROTAB is made. If no entry was found, a message is printed and the user is

requested to input another name. Otherwise, MDBULD is called to interface

with the user in modifying the default control table. After the user has

indicated that all desired processor default control tables have been modified,

DCTMOD then writes the updated processor catalog back to unit one. The INFONET

routine OBEY is used to close the file MDTABLJD equated to unit one. Execution

of BCTMOD is then terminated.

Output: The update processor catalog file (MDTABL.MD) will be placed back

on unit one.

9.1-I

http:MDTABL.MD
http:MDTABL.MD
http:MDTABL.MD

Crin yteme roeing

II'°
pocesor name ntrd

onitu geomat
fmunit one

AeYsPrintfrmessage that

proewssor

Read theproessor he

aestordenet
 th aao a

~ be moobeieieteI~ Read

Yes

Delete processor from

PROTAB and pack

DCTHOD Flow Diagram

9.1-3 Page 1 of 2

Print message asking for

processor names to modify

Read the processor name[

to be modified

processornnameiYes

Write the keys for the

processor catalog and[

SEARCHthe
 catalog (PROTAB)

nessagesshe name

found OBEY

_ Call system routine
,s

Yes\to close file 11DTABL.MD/

on unit I

Itact with user to

\modify default control

DCTMOD Flow Diagram (Continued)

9.1-4 Page 2 of 2

Iaj2'ODUC1B'L'TY OF g
ORIGINAL PACE 'S POOR

http:11DTABL.MD

MDADDR - Library Maintenance Processor

MDADDR is an extension of the library maintenance programs MDGENR,

DCTMOD and MDUMPC. Its execution is triggered by the boot logic when changes

to the library are detected during catalog loading (see Boot Logic (MDAS)),.

MDADDR integrates these changes into the library catalog and produces an

updated catalog.

Method

Input: The primary inputs to MDADDR are the library catalog and catalog

control keys as loaded by the boot logic. The control keys indicate the

original catalog prior to the library maintenance activities and the area

containing new processor data. Also input are the swap area sizes and origin

addresses of the SMT and ephemeris buffer.

Processinq: MDADDR and its associated routines are designed for use by

subsystem maintenance personnel, therefore special log-on access codes are

required in order to proceed with the library maintenance process. Each new

catalog entry is examined in turn to determine whether or not it refers to

the submonitor (MDSMON) or MDADDR itself.
As shown in Figure 2 of Appendix

C these data share the first catalog entry and thus are handled separately

from other catalog entries.

Processor entries are compared with the list of existing cataloged

processors and the default control table maintenance routine MDBULD is invoked

to build or modify a default control table. The catalog data for the processo

is then moved to an appropriate location in the catalog which.is then re­
sorted alphabetically, if necessary.

These-procedures result in reduction in the amount of memory occupied

by the catalog as new data for existing processors are moved into the catalog.

To maximize SMT size the origins of the ephemeris, buffer and SMT are adjusted

to utilize the vacated area.

9.2-1

The finalized catalog is output to the file MDTABL.MD destroying the

previous catalog. Library maintenance thus completed,MDADDR verifies the

adequacy of the swap area for loading the submonitor and returns to the

resident.

Output: MDADDR outputs the updated catalog to memory and mass storage

and adjust the origins of the ephemeris buffer and SMT as appropriate.

9.2-2

http:MDTABL.MD

USAGE

ENTRY MDADODR

CALL MDADDR

EXTERNAL REFERENCES
 SORT!

MDBULD, MDLOGO,

SEARCH,

DIAGNOSTICS
LARGE FoR CURRENT

MDAS

@) IS TOO

MDSMON (C.......o
OF
EXTENT I. ',..... SWAP AREA
CONFIGURATION

THE SUBMONITOR REQUIRES

A

THE LOAD MODULE
OF DETERMINE THE

REGIONS.

LARGER THAN THE

ALLOCATED IRES

REVISE THE VALUES

EDIT MOAS-PNC TO

REQUIREMENTS,

REASSEMBLE AND LINK
MDAS.

AND DRES APPROPRIATELY
AND

MAINTENANCE ACTIVITIES

TEMPORARILY UNAVAILABLE
DUE TO

MDAS IS
TRY AGAIN LATER
 PLEASE DEFAULT

MODIFICATION OF

THE CONSTRUCTION

AND ACTIVITY,
SINCE

IS NOT CONSIDERED A USER

CONTROL TABLES MDAS UNTIL ALL
SUCH

ACCESS TO

MDADDR PROHIBITS

USER

ACTIVITIES HAVE
BEEN COMPLETED.

UPDATED

MDAS LIBRARY CONTROL

TABLE

THE COMPLETION OF

THE CATALOG

MESSAGE SIGNALES
THIS

MAINTENANCE PROCESS.

STORAGE
EXTERNAL
WRITEN TO FILE MDTABL.MD
IS

MERGED CATALOG
THE

COMMON
BLANK

I/0
VARB

I
BADGE

I
DSIZE

I/O
DBSTRT

I
ISIZE

I/O
IEPHST

I/O
PROTAB

I/O
PTABKY

/

LOCAL COMMON / MOBUFF DEFINITION
RELADD

[/0 TYPE DIM LOC

VARB

0
MDLEN

REPRODUCIBILITY OE THE
ORIGINAL PAGE 1B POOR

9.2-3

http:MDTABL.MD

.EnterMDDDR

tIDLOGO

Perform log on pro­

access code unavailable

IiaiStore newentrg

upatdata into first

forrD~rncataloq rl half of firstentry

Er
I fNo

Ys Store new entrydata into second
for INIDADD

?
half of first
catalog entry

dAdjust count of
number of duoli­

cates between old
new entry iand new entries

IIDBULD

Construct or update
default control
table for processor

IDADDR Library 'aintenance Processor Flow Diaqram Page 1 of 2

9.2-4

A/I c/II

Udate m
ou newprocessor

ew

Adjust count of

number of dupli­
cates between old
and new entries

Adjutaleg t

I

Mrove new entry to
assigned location

ew YsSORT1

.piratcer PReelphabetize
?catalog

Increment to
next entryo

No Last
e

entries

Clear keys to

indicate com-I
plate cataloq

SAdjust ephemeris and

SMIT origins to reflect

reduced size of catalcq

R IJ
RgE O

(.-dG']NAL

BH y
ITPAE

Tf
F01
00

swpae o Swap area

I:DADDR Library aintenance Processor Flow Diagram Page 2 of 2

9.2-5

MDBULD - Library Maintenance

The purpose of MDBULD is to build a default control table for the pro­

cessor requested. It also updates the default control table length, argument

definition length, and processor revision number in the PROTAB.

Method

Input: The input to MDBULD consists of the entry number of the processor

in the PROTAB (system directory) and flag designating whether this processor

is a new or existing one. These inputs are passed through the calling seq­

uence.

Processing: MDBULD, if the default control table does not need modifica­

tion, moves the old PROTAB default control table length, argument definition

length, and revision number into the new PROTAB entry for the processor. If

the request was for a modification, SEARCH is called to find the processor in

the PROTAB and the values updated.

If a modification was requested for the default control table, then

MDGETC is called to get the existing default control table for the requested

processor. By a series of calls to MDPRMT, the user is prompted for the

information needed to update or build the argument specifications portion of

the default control table. The user may input the following parameters for

the default control table: the revision number, number of arguments, and

scan flag for the label field, and the argument identification, I-dimension,

J-dimension, type, constant argument and I/O flag for each argument. If the

user does not input a value, the value will not be changed or reinitialized.

The data completion and argument completion flags are set in the control table

according to the status of the data.

If there is a request to list the table, MDLIST is called to display

this data. Since the argument specifications and the data are packed together

when residing on disc, MDSPLT is called to separate them for storage in the

working buffer. After the control table has been updated or built, if there

is a request to edit it,MDEDCN is called. If no further modifications are

desired, MDCTPK is called to pack the argument specifications together with

the data before MDPUTC is called to write this information on disc.

9.3-1

Output: The output from MDBULD is an updated PROTAB and an updated or

newly built default control table.

9.3-2

USAGE
....AEN RlaHauLD- - -

CALL MDBULD (KEYFLAG)

ARGMT I/O TYPE DIM DEFINITION

KEY I I I KEY IS THE PROTAB ENTRY NUMBER OF THE

__--p-ROCE.SSR--......-.

FLAG I I FLAGRO INDICATES THIS IS A NEW

_______-- ___-- Sb T A~G-N---?iU*L---; - NP 4*A<-T E5-

THIS IS AN EXISTING PROCESSOR

EXTERNAL REFERENCES

MDEDCN

MDLIST

..--ill Pfl.. _ _ _--

MDP-UTC

_ _ _ - -_.f S P- . _.

SEARCH

DIAGNOSTICS

A DUPLICATE ARGUMENT IDENTIFIER WAS FOUND

RE AD--RR-OR-WH-I-L kE-A+ N4 --RaES -G-US

AN ERROR OCCURRED WHILE PROMPTING
-- SSI-OHCONCLU D--D--n F-A-UL L TABLE -GENERA-T-ED......

___-o~

AA_______n CON
AN ERROR OCCURRED WHILE PROCESSING THIS DEFAULT

-,rO-- TROL AT4fB!A - N O -I--.A ULT-4- N-T-R-OL--T-k-E--- i- G---A-T-ED

pr.QRE
ErX-TERNAL

NONE

vARB I/0

.PROTAB I/0

PTAI FNI

FOMKtiltLJtODE/

Fog I.

INTEG I

NAME T

OF THEREPRODUCIBILITY

u-&i7TL PGE....93---

DSIZE a

0 3

9.3-3

MDULD

Call MDPRMT to ask
ifdefault control

needs modification

definiti ndenthen

revi ionnmbito B/2T

deal9Mo-e Page ofntr4

B/1 ,2

-odification needed

Call MDGETC to get
existing default con­

trol table infoication

information prcso -cnaoteo/
Didta

MJxist (ue tableDFlprowissor'

processors name
beo litdand call SEARCH to find}
toCasklp ptab e /Prompt

be processor in PROTAB /

from~eful datointeronro

Call MUDLST to lis /

Call MDSPLT to split the

argument specifications

from data in the control/

table/

MOBULD Flow Diagram (continued) Page 2 of 4

9.3-5

/2

Build default control table

Output messaqe to

begin building

default control

table

Call 'DPRT to prompt

for one argument

specification

Store each of the specifications

as received from prompt into the

control table. Also store the

default control table length,

argument definition length, and

processor revision in PROTAB

All argument 110
soecifications promoted - are G/4
these values to be edited

Call HIDEDCN to comol ate

1located
the control table

in the working bufferO

MOBULD Flow Diagram (Continued)

9.:-6 Page 3 of 4

F/3

Loop through argument specifications

Is Completionl No Stfa o lflag set in argument aSetflag for all
Specficaionsdata not complete

for argument

Set flag to all

data completefor arument

__ _______ ________

Did

tabletagee

NoCall MOCTPK to

o

Cllp/ ! flo to asesontrol table as'~
listed

al }L
ISt table

dataSfilcotrlo

/ Cal
'I lDPP ITlto ak,if fur er editino isstoredesire

ack (continued

Call "IDPUTC toto
table on disc

PIDPRMT to ask if
argument specifications
need to be modified

?

j-o /Call MDSPLT to split

the argument sDecifi-
\cations from the data

in the control table!

o.
C-/3

MOBULD Flow Diagram (Continued)

9.3-7Page 4 of 4

MDGENR - Library Maintenance

IDGENR is used to add a processor to the library or replace an old

version of a processor with a new one. It records the appropriate infor­

mation in the librarv catalog and generates a file of absolute code for

use by the MDAS resident in loading the processor.

Method

Input: At the time of execution MDGENR is complete and requires no

additional data for updating the library. It does read the catalog key

record (first record) in order to update it with information pertinent to

the new processor absolute file being generated.

Data relative to the processor involved is assembled into MDGENR

(see USAGE).

Processinq: The name and entrv point of the appropriate processor are

assembled into MDGENR followed by a link edit which results in a load module

headed by MDGENR with the processor and all supporting routines assigned to

specific memory locations. MDGENR is precisely the size of the resident

I-bank, thus the region assigned to the linked processor corresponds to the

area in the I- and D-banks reserved for the swap area by the resident. The

following figure illustrates the correspondence between MDGENR and MDAS

memory-allocations.

Externally defined symbols in MDENDL are used to determine the extents

of the processor. This data is used to compute the lengths of the processor

areas which together with beginning addresses are written to the catalog (see

Figure C-2). The catalog key record is updated with the number of presently

defined new library entries and a pointer to the entry corresponding to a

new version of the MDADDR maintenance processor if one exists.

A new file is output containing two records. The file, named with the

processor name and a version of MD, contains a record each for the processor

I- and D-banks beginning at the origins of the swap area and equal to the

processor lengths.

9.4-1

Output: The library catalog is updated and a new processor absolute

file created. The swap area extents (last required I-bank and D-bank

addresses) necessary for processor loading are output to the terminal.

9.4-2

I"Bank

MDGENR Resident

Processor

M: IBank

Support Swap

Routines Area

Reserve

MDENDL

D-Bank

Monitor
Dummy Blank

Common Reserve
 Communications

and SIT
Processor

D-Bank - D-Bank

MDENDL Swat

Area

Reserve

Relationship Between MDGENR and MDAS Memory Allocations

9.4-3

USAGE

THERE ARE TWO PROCEDURES FOR INVOKING MOGENR. THE FIRST IS USFD

WHEN PROCESSORS ARE TO BE ADDED OR CHANGED AND THE- SECOND WHEN

UTILITY PROCESSORS CONTAINED WITHIN THE SURMONITOR ARE INVOLVEn.

INVOKING MDGENR FOR PROCESSORS

!EDIT MDGENR MOGENP

AR T PRONAM:'...fl., ,E (SUPPLY PROCESSOR NAME AN]n

AR T PROENT:...... E ENTRY NAME, SEE PvSTRIcTIONS)

AQ

!SAS,N MDGENP

!GSLINK,WRITE,MOREMAP MDGENP

AINCLUDE .,.. (SUPPLY REQUIRED BLOCK DATA NAME)

AA:SEGMENT
AINCLUDE MDENDL
aEXIT

!MDGENP

!CHANGE MDGENP-PNC ACCESS:REPL

!UNLOAD

!DROP,EVERY MDGENP

INVOKING MDGENR FOR MONITOR CONTAINED UTILITY PROCESSORS

!EDIT MDGENR MDGENP

AR T PRONAM:'...*... E (SUPPLY PROCESSOR NAME)

AR T PROENT:MDENDLE

AR A AqT-l:OE

AQ

ISAS.,N MDGENP

!GSLINK.!RITE MoGENP

!MDGENP

!CHANGE MDGENP-PNC ACCESS:REPL

!UNLOAD

!DROPEVERY MDGENP

EXTERNAL REFERENCES

ECLOSS TO CLOSE FILES

ECTSOS TO OUTPUT TO TERMINAL

ELRSRS TO READ LOGICAL RECORDS

ELRSVS TO WRITE LOGICAL RECORDS

EOPENS TO OpEN FILES

EROOLS TO TERMINATE EXECUTION

ETRUNS TO TRUNCATE FILES

MDENDD TO LOCATE END OF ALLOCATED D-BANK

MDENDI TO LOCATE END OF ALLOCATED I-BANK

SUBSYSTEM PROCESSOR-To BE ADDED OR MODIFIED

RESTRICTIONS

WHEN PERFORMING THE DESIGNATED EDITS OF MoGENR THE NAME IN

1 MARKS SHOULD BE BLANK FILLED To THE RIGHT TO ASSURE SIX

CHARACTERS. THE EDIT REVISIONS SHOULD ECHO THREE. TWO AND

ONE LINES OF CODE IN TURN.

REPRODUCIBILITY OF THE
9.4-4 ORIGINAL PAGE IS POOR

http:PRONAM:'...fl

THE FOLLOWING SYMBOLS ARE USED IN MDGENR CODE AND, THUS MUST

NOT APPEAR AS THE PROCESSOR ENTRY POINT NAME.

AO-AI5, ADRNAM, BI-BIS, BLDASC, CRES, tOUT, ERMSG, ERROR,

VILNAM, HI, H21 IOUT, LDOcB, L'DUCB, M, MDENoD, MDENDI,

MDFSTo, MDFSTI, MDGENR, MSG, MSGZ, PTFM, PTPK, TABUFF, TBOCB,

TBUCS. UTILI, JTIL2, XH2, XM

MDGENR UPDATES THE CATALOG FILE MQTABL.MD ON-WHICH EVER

INFONET LIBRARY IT IS FOUND. IT WILL NOT WRITE INTO LIES

UNLESS THAT IS THE ORIGIN OF THE FILE.

DIAGNOSTICS

OUTPUT ERROR, ERROR I IN Al

AN ERROR HAS OcCURRED DURING OUTPUT or THE CATALOG OR

PROCESSOR FILE. THE SYSTEM RETURN CODE IS, CONTAINED IN

REGISTER AI.

..... COPIED TO LOAD FILE EXTENT I .,... 0 s.9.
THE DESIGNATED PROCESSOR HAS BEEN OUTPUT TO THE LIBRARY
THE LAST ALLOCATED ADDRESSES OF THE I- AND 0-BANKS ARE
SPECIFIED.

EXTERNAL STORAGE

THE FILE MDTARL.MD IS MODIFIED TO REFLECT THE PROCESSOR FILE

CREATED, A FILE NAMED AFTER THE PROCESSOR WITH VERSION Mr IS

OUTPUT.

BLANK COMMON

NONE

LOCAL COMMON

NONE

9.4-5

http:MDTARL.MD
http:MQTABL.MD

poessor

Store lengths and origins

of I-and D-banks inwords

two and three of new
entry record

MDGEtR - Library Maintenance Program
9.4-6 Page 1 of 2

SIncrement

number of

new entries

Mintna e Ys Set key 3 to

orocssorpoint to new

HDADDRentry record

oe e file

orocessor name. D
outnut I- and
I-Iank'absolute

Errror

mesaemesseqe and

HDGENR -Library Mlaintenance Program (Continued)

9.4-7 Page 2 of 2

MDIMS - IMS Interface

MDIMS is intended to be the Primary subroutine of the MDAS/IMS interface

component. Since there is no interface with IMS in this prototype, this com­

ponent does not currently exist. However, one array of data (GLOCON) which

will eventually originate in It-S is emulated by MDIMS.

Method

Input: The input to the IMS interface comoonent will consist of primarily

the name and type of the desired data. Optionally, the subscript(s) specifying

a displacement into the desired array may be input. The calling component

may also provide the IMS interface component with a buffer for the data re­

trieved as well as an indicator of its length.

Processino: There are two entries into the IMS interface component.

MDIMS is called to retrieve a particular element from IMS, move the data into

a designated buffer, and create an SMT entry for this'data element. MDIMSI is

called to retrieve a particular data element from IMS and create an SMT entry

for it.

In the current much simplified version of MDIMS only one data element is

"retrieved" from IMS. The global constants array (GLOCON) is-stored here and

moved to the SMT when either MDIMS or MDIMS] is called. All other calls to

the existing IMS interface cause an error message and return a status indicat­

ing that the requested element was not found in IMS.

Output: When the MDIMS entry is called a buffer is returned containing

the data element requested. When either MDIMS or MDIMSl are called the SMT

directory and data area are updated via a call to MDPUT in order to enter

the new data element. -Astatus flag is returned when either entry is used.

The status will indicate data successfully "retrieved" from IMS, data not

found in IMS, or error returned from MDPUT.

10.1-1

USAGE

ENTRY MDIMs

CALL MDI M S (NAME, TYPE, IDIM, JOIMI MAX, BUFF, SIZo STAT)

ARGMT i/O TYPE DIM DEFINITION

NAME I HOLL I NAME OF THE VARIA3LE TU bE kLTNILV-

TYPE I I I
ED
TYPE OF THE VARIABLE Tu BE HLTrILV-

ED
loIM I I I I-SUBSCRIPT USED TO DETEkMINL F*ItST

WORD OF RETRIEVED VARIAbLE TO OE
TRANSFERRED TO BUFF.

JoIN I I I J-SUBSCRIPT USED TO UETLHMINL FIST
wORD OF RETRIEVED VANIABLE Tu BE
TRANSFERRED TO BUFF.

MAX I I I MAXIMUM NUMBER OF WURDS TO bL TRANS-

SIZE 0 I I
FERRED INTO BUFF,
NUMBER OF WORDS ACTUALLY TNANbFLRRLU

STAT 0 1 1
INTO BUFF,
RETURN STATUS FLAG
* -1 => VARIABLE NOT FOUND IN iMS

ISGLOCON IS THE ONLY AVAIL-
ABLE IMS VArCIABLE CUkf ENTLY)

*0 W> O.K.
OTHER "l ERROR RETURNEd FRUM STUXAiL
MONITOR (MOPUT). VALUE I I LL5s
THAN MDPUT'S STATUS,

ENTRY MDIMSI

CALL MDIMSi ('AME, TYPE, STAT)

NAME I HULL I NAME OF THE VARIABLE TO BE fETRILV-

ED

TYPE I I I TYPE OF THE VARIABLE TU BE RETHILV-

ED

STAT 0 I 1
 RETURN STATUS FLAG

-1 m> VARIABLE NOT FUUND IN IMS

(SGLOCON 15 THE ONLY AVAIL-

ABLE IMs VARIABLE CURNENTLy)

•0 a> O.K.

OTHLR m> ERROR HETURNEU FROM SlONAGL

MONITOR (MDPUT). VALUE 1S 1 LESS

THAN MOPUT'S STATUS,

MDPUT

DIAGNOSTICS

*40 	MDIMS CALLED FOR TYPEx

INDICATES THAT AN ATTEMPT TO RETRIEVE DATA

FROM THE NON-EXISTENT IMS INTERFACE HAS BtEN

MADE

O 	MDIMS CALLED-- NAME. TYPE=

lDIM. JDIM= MAAS

INDICATES THAT AN ATTEMPT TO RETRIEVE DATA

FROM THE NON-EXISTENT IMS INTERFACE HAS BEEN

MADE

101ODUoBTtt I POOP
10.1-2VA SOO

EXTERNAL STORAGE

NONE

BLANK COMMON

NONL

LOCAL COMMON

NONE

10.1-3

MDLOGO - Access Control

MDLOGO is the routine which controls use of the system and provides a

measure of security for user created files. It also creates new entries in

the access files when a user "logs on" the system for the first time.

Method

Input: MDLOGO has no input.

Processino: Upon entry, the user is prompted for an access code. The

access file (MDACCD) is next read into the working buffer. The first record

contains the number of active users and the total number of available codes.

The second record contains the file identifier (version), the key (index)

to the information file (MDUNIF), and both parts of the access code for each

user. In addition it has all unassigned file versions and keyes with space

reserved for future access codes.

If the user has entered a code which matches one in the file, control is

returned to the calling routine and system operation begins. If the code

does not match any in the file, the user is asked if he is a new user. If

he is not, an access code must be entered which matches a previously defined

one. A maximum of three attempts is allowed for the matching of an access

code. When three attempts have failed, execution is terminated and control

returned to the INFONET operation system.

When a user "logs on" the system for the first time, he is given a two

character code which is used as a file identifier. In addition, he is asked

to provide his name and organization which are inserted into the keyed infor­

mation file (MDUINF). The access file (MDACCD) is sorted alphabetically on

the first portion of the access code. Control is now returned to the calling

routine and actual MDAS execution begins.

Output: All output is contained in the intramonitor communications area

of blank common and consists of: the number of active users, the current

users file identifier, and both parts of his access code.

11.1-1

Contents
Record

Number
 Word 1
 Word 2

Number of I Maximum #
1 (2 words) Active codes of codes

Word 1 Word 2 Word 3

2 1 Assigned record i 2 6 character 6 character
(3*N words) 2 # in INFO iChar. field data access field data code

3 File Iversion code assigned by consisting of an

I codes the user organization code

I (FLDATA) (e.g., T = TRW,

L = LEC, etc.)

followed by the 5

digits of the users

badge number

M

N

Access Code File (MDACCD.MD)

Record

Number Words 1 and 2 Word 3 Word 4

1 (4 words) Last Name (max. 12 characters) Initials Organization

2 Last Name jInitials Organization

N

User Information File (MDUINF.JD)

11.1-2

http:MDUINF.JD
http:MDACCD.MD

USAGE

ENTRY MDLOGO

CALL MOLOGO

EXTERNAL REFERENCES

MDGETC

MDPRMT

MDPUTC

SEARCH

SORTI

RESTRICTIONS

MDLOGO WILL NOT MAINTAIN FILE INTEGRITY IF TWOOR MORE, NFW

USERS ATTEMPT To LOG-ON THE SYSTEM SIMULTANEOUSLY,

DIAGNOSTICS
ACCESS CODE OF ' IS AGAIN,.., 1*o"NOT UNIQUE---TRY

A NEW USER HAS ENTERED AN ACCESS CODE oF WHICH ONF
PORTION OF THE CODE ALREADY EXISTS

ACCESS TABLE 15 FULL-SOMEONE MUST BE DELETED BEFORE ANY NIEW
USERS MAY COME ON THE SYSTEM.

ALL AVAILABLE SLOTS FOR ACCESS CODES ARE BEING USFD,
EITHER DELETE A USER OR INCREASE THE SIZE OF THE
AVAILABLE NUMBER OF ACCESS COnES

ERROR WHEN ATTEMPTING TO READ OR WRITE ACCESS FILE.
AN ERROR OCCURED IN ACCESSING MOACCD--NEED TO VERIFY
THE VALIDITY OF THE FILE

*1/0 ERROR WHILE PROMPTING FOR BOOKKEEPING INFoRMATION
PLEASE NOTIFY IDAS PROGRAMMING PERSONNEL

WHILE QUESTIONING FOR A NEW USERS ORGANIZATION OR
IS
NAME A PROMPTING rRROR OCCURED, THE USFR ALLOWED

ON THE SYSTEM AND HIS VERSION IS CREATED: HOWEVER,

THERE IS NO ENTRY IN MDUINF FOR THIS USER.

**SYNTAX- ERROR-ACCESS CODE HAS FORM CCCCCC.ARBABA

TYPE IN 	? FOR A FULL EXPLANATION OF FIELDS

THE USER HAS MADE A SYNTAX ERROR WHEN FNTERING HI4

ACCESS CODE. ENTERING A ? GIVES A'FULL EXPLANATION

OF THE NECESSARY SYNTAX

"OSYNTAX ERROR ON INPUTTING NAME

AN ERROR OCCURED IN THE SYNTAX OF THE USER'S NAME.

EXTERNAL STORAGE

MDACCD ACCESS FILE CONTAINING FILE VERSIONSA

KEYS TO MDUINF.AND ACCESS CODES

MDUINF INFORMATION FILE CONTAINING EACH

CURRENT USER'S NAME AND ORGANIZATION

BLANK COMMON

VARB I/O

ACCCDE 0
BDGNMB 0
NENTR 0

YT)MU1mTY OF TO
11.1-3 (11l ,dljT'1. POOR,

COMMON / MDCODE /

VARA I/O

COMMA I

EOL I

NAME I

QsTION I

COMMON / MOBUFF /

VARB I/O

WB I

LOCAL COMMON

NONE

11.1-4

Enter SO
11DLOGO TO

stries

Request access EXI Request verification
code of presence of new

use

and v ?xlain
?p~e use~r

No 7Yes

SEARCH
Examine file for

Examine file forduplicate badge

input c ode or code

SYesI Yes

SStore badge number EXIT Assign version code

and version code recordn torfil and increment count

SSORT1

IRequestuserI

MDLOGO Functional Flow Diaqram

11.1-5 RERODUCIBILITY OF TIH

ORIGINAL PAGE IS PQOR

MDELAC - User Accounting Files Maintenance Program

Purpose

Users of MDAS are uniquely identified by access code and badge

number (see MDLOGO). Two accounting files are maintained which contain

all Kacessary information regarding the access process. MDELAC is an

auxiliary program which facilitates the maintenance of the files.

Method

Input: The operation to be performed by MDELAC, initialize files,

delete user codes, or list the files, is input following prompts from

the program. Specification of codes to delete is prompted following

entry of the deletion mode.

Processing

The purpose of the initialization option is to purge the access
code file such that only the MDAS maintenance code remains active.
To accomplish this objective a file with the name MDACCD.MD of the

following structure and content is created:

Word 1 Word 2
Record 1 1 163 - Number of active codes

and maximum number of
codes.

I UPTE CC2
2 PE

I
3 PF
4 PG

21 Py
22 PZ
23 'QE
24 ' Z '

161 NQ1

162 WR

163 ' WS

http:MDACCD.MD

In addition, keyed record number one of the keyed file MDUINF.MD

is filled with the following text:

Word 1 Word 2 Word 3 Word 4

MAINTE I NANCE blank TRW

The user code deletion option accesses the access code file

MDACCD.MD and, under user control, deletes the requested codes from

the list active access codes. A new file containing the remaining

valid code is output.

Output Except for the list option, MDELAC outputs the accounting

files MDACCD.MD and MDUINF.MD.

11.2-2

http:MDUINF.MD
http:MDACCD.MD
http:MDACCD.MD
http:MDUINF.MD

USAGE

ENTRY MDELAC

EXECUTE THE GPS COMMAND !MDELAC

THE INPUTS TO MDELAC ARE AS FOLLOWS

AINIT CAUSES THE ACCOUNTING FILES TO BE PURGED ACCEPT FnR

THE MDAS MAINTENANCE ACCESS CnDE

ADEL ENTERS A MODE OF DELETING INDIVIDUAL USER ACCFSS

CODES VIA THE.FOLLOWING INPUTS

CCCCCC CODE TO BE DELETED

ABBBBB BADGE NUMBER OF USER

#QUIT EXIT CODE DELETION MODE

ALIST DISPLAY THE ENTIRE ACCOUNTING DATA CONTENTS

AQUIT TERMINATE EXECUTION OF MOELAC

EXTERNAL REFERENCES

MDGETC, MDPUTC. SEARCH, SoRTI

DI.AGNOSTICS
USER , NOT IN SYSTEM

THE ACCESS CODE/BADGE NUMRER IS NOT AMONG THE ACTIVE

USER CODES.
ERROR IN .. *,. STATUS =

MDGETC OR MOPUTC RETURNED THE INDICATED 'STATUS. REFERR

To THE APPROPRIATE DOCUMENTATION FOR EXPLANATION.

EXTERNAL STORAGE

MOELAC INPUTS. MODIFIES AND OUTPUTS THE ACCES"S CODE FILE

MDACCDMD AND THE USER IDENTIFICATION FILE MDUINF.MD, UNIT I

IS TEMPORARILY EQUATED TO MDUINF.MDO

BLANK COMMON

NONE

LOCAL COMMON

NONE

RFTRODUCIBIIY OF
ORIGINAL PAGE IS POOR

11.2-3

http:MDUINF.MD

OELACoEL

Eter

rea Mileamin

Prompt aotgInvaling Opio the I

OoFuntionaFd i accuntintfile

lEacountingFo ig~

11.2-4 Page 1 of 4

Set header

record contents

(Ientry, maximum

of 163)

Define first
access code
for DAS
maintenance

Generate

record number]

version IDwords

for the sequence
2/PE, 3/PF
22/PZ, 23/QE
... 163/14S

IIDPIJTC

Output access
code file and

close

IIDELAC -t INT Logic Functional Flow Diagram

11.2-5

Page 2 of 4

Yes
Ipt

Feod4 l

bdError

ne
t

andread
 flgedetre

termn

tormv
andreade SORTI
Proptfo

umberReorderfil

en trifos

badge

kgg
inlar

A RCHAdusscun

of
acie4oe

Examine code

E/4 C/I F/4

MDGETC
Input access

code file

header record

ereor

Cemlited fiesemt

lo Yes A

IDEnC -T LIST Logic Functional Flow iagrm

Page 4 of 4

11.2-7

Appendix A

Cross Reference of all Monitor Subroutines

Routine Referencing Routines

MDADDR

MDALCT MOSMON.
MDALOC MDALCT.

MDALST MDCNT *
MDBCDI MDCDAT,

MDBCI2 MDSCAN,

MDBULD DCTMOO.

MDCDAT MDSCAN.

MDCMNT MDCMT

MDCMT MDSMON.

MDCMTG MDSMON,

MDCMTL MDCMT ,

MDCMTS MDCMT .
MDCMTV MDSMON.

MDCNT MDSMONt.

MDCNTA MDCONT.

MDCNTE MDCONT.

MDCNTM MDCMNT.

MOCNTS MDALOc.

MDCONT MDCNT

MDCONV MDELET.

MDCTPK MDALOC.

MDDEFN MDCNT

MDEDCN MDBULn.

MDEDIT MDCONT.

MDELET MDALCT.

MDENDD

MDENDI

MDENDL

MDENTR MDALCT,

MDFIND MDALCT.

MDGET MDCMNT.

MDGETC MDBULO,

MOSMON,

MDCONT,

MDADDR.

MDLIST,

MDCMTG.

MDCNT *

MDGETC.

MDBULD.

MDSMON,

MDALOC.

MDALOC.

MDALOC.

MDCMT .

MDCMNT,

Aj.

MDLIST.

MDSMON.
MDSMON.

MDCONT.

MDPRMT, MDPUTC. MDSMON,
MDCNT

MDCMNT. MDPUT ° MDQUIT. MDUTIL,

MDPUT
MDCMTG. MDELET MDGET , MDPUT MDSMON, SMPRTP.
MDCNT . MDCNTE. MDSMON. MDUTIL.
MDCNT , MDELAC, MDLOGO. MDSMON. MDSMTW.

MO I PCO
MONS
MOIMSI

MOCNT
mDAL.Or.

Mt)fNTE*

MOLIST
MOLKUP
MDLOGO
MOLSTH
MOLSTI
MDLSTO

MOBULn.
MI)ALCT.
MDADDQ.
MDALST.
MDALST*
MDALST.

MDCNIT
MDALOC.
MDSmON#
moCMTLO
MDCMTL,
MDCMTL*

MDUTIL*
MDALsT.

MOLIST*
MOLIST.
MULIST.

MDCNT MDCONT.

MDLSTR MDALST. MDCMTL* MDLIST*
MOMERG
MOPACK

MDSMON#,
MDENTP. MOGUIT, MDROLL, MDTOC

MDPCK MDCDAT. MDSCAN*
MDPRMH MDALST*
MDPRMI MDALST,
MDPRMR
HOPRMT

MOPUT
mDPUTC

MDALST.
LPSVFI.
mOWITd
MDALOC.
HDALOC.

MUSMON,
MDCMNT,
MOBULO,

MDALST.
MQSMTW*j
MUCHT o
MDELAC*

MDBULD*
MDPRMR*
MDCNT *
MDLOGOO

MDCMT .

MDIMS *
MOSMTW*

MDCNT MDLGGO* MDPRMH* MUPRMII

MDQU IT MIDSMONIt
MDRADI MOGET .
MDRADO MOPUT *
MOROLL MDALOr,
MDSCAN MDPRMT.
mDsmoN MDAS
MDsmTR MDSMOM,
MDsmTW
MDSPEC
MDSPLT

MDQUIT,
MDALOC*
MOBULn*

MOSMON.
MDCNT .
MDCMT *

MDCNTS#
mDCNT

IST.MDL
MDSmON. MDSMTWO

MDSQZR MDBCDT* mDCDAT*

MOTOC MDSMON,
MDUTIL MDSMONI*
MDVCMD MDCMT . MOSMON.

08EY

SEARCH

OCTMOT).

DCTMOn-

MDADDR*

MDADDR#

MOELAC*

ML)HULD.

MDELETo

mDCMNT*

MDLOGO*

MDCNT *

MOGUTT.

mDELAC.

MDSMON*

MDFINDo MDLOGO* MOSMON

SORTi MDADDP. MDCMT * MDELAC. MDFIND. MDLOGO MDPACK.
SORT2

UPDATE MDLOGO.

Appendix B

Gommon Blocks

COMMON /MDCOOE/ ALLOCATION

VARB

NAME

REAL

INTEG

DBLE

TYPE

I

I

I

I

DIM LOC

I c0 DE(1)

1 CoDE12)

I CODEt3I

I CODE(q)

RELAUD

0000

0001

0002

0003

EOS I coDE(S) 000

HOLL

OCTAL

LPAR

RPAR

DOLLAR

AT

PERCNT

COLON

APOSTR

EQUALS

MINUS

I

I

I

I

I

I

I

I

I

I

I

I CODE(6) nob

CODE(7)" 0006

I CoDE(3) 0007

t CODE(9) 001

I CODE(IO) 0011

I CoDE(I) 0012

I CoDE(12) oi3

I CoDEi3) 0 01q

1 CODEflq) 0oi

I CnDE(IS) 0O01

I CnOE(16) 0017

COMMA

UPARRW

BCKSLH

QUESMK

I

I

I

I

I CnOE(17) 0020

I CnDE(18) 0021

I CoDE(19) 0022

I CoDE(20) 0023

DEFINITION

FIELD DESIGNATOR INDICATING

AN ALPHNUMERIC NAME (=If

FIELD DESIGNATOR INDICATING

A REAL NUMBER (a2)

FIELD DESIGNATOR INDICATING

AN INTEGER NUMbER (x3)

FIELD DESIGNATOR INOICATIN?

A DOUBLE PRECISION NUMBER

(s'4)
FIELD DESIGNATOR INDICATING

THE END OF THE INPUT STATE-
MENT (RS)

FIELD DESIGNATOR INDICATING

A HOLLERITH VALUE 1.6)

FIELD DESIGNATOR INDICATING

AN OCTAL NUMbER (s7)

FIELD DESIGNATOR INDICATING
A LEFT PARENTHESIS =}8)

FIELD DESIGNATOR INDICATING
A RIGHT PARENTHESIb (=9)

FIELD DESIGNATOR INDICATING
A DOLLAR SIGN, 5, (.10)

FIELD DESINATOR INDICATING
AN AT SIGN, @I, (mII)

FiELU DESIGNATOR INDICATING
A PER CENT SIGN, %, A=12)

FIELD DESINATOR INDICATING

A COLON, :9 (=13)

FIELD DESIGNATOR INDICATING
AN APOSTOPHE, ', (ai'i

FIELD DESIGNATOR INDICATING
AN EQUALS SIGN, as (=15)

FIELD DESIGNATOR INDICATING

A MINUS SIGN OR A HYPHEN, -.

I=16)

FIELD DESIGNATOR INDICATING

A COMMA (=17)

FIELD DESIGNATOR INDICATING

AN UP-ARROW.4 9 I11s)

FIELD DESIGNATOR INDICATING

A BACK-SLASH, \, (19)

FIELD DESIGNATOR INDILATING

A QUESTION MARKo ?o (=20)

B-1

IODUoB]TY OF THE

ORIGINAL PAGE IS POOR

VARS

PLUS

ASTSK I

LBSIGN

SLASH

SUBS

REPEAT

TYPE DIM LOc RELADO

I I CnDE(2I) 0 0 2q

I CoDE(22) 0O02

I I LoDE(23) 0026

I I LnDE(2) 0027

o
CODE(2S) T CODEt32) NOT

I I CoDE(33) 0OqO

LODE(3q) TO CODE(42) NOT

I I CoDE(43) 0052

DEFiNITION

FIELD DESIGNATOR INDICATING

A PLUS SIGN, +'s (=21)

FIELD DESIGNATOR INDICATING

AN ASTERISK, s, (=22)

FIELD DESIGNATOR INDICATING

A POUND SIGN, , C=23)

FIELJ DESIGNATOR 'INDICATING

A SLASH. /. (=2)

CURRENTLY USED

FIELD DESIGNATOR INDICATING

A SUBSCRIPT FIELU (w33)

CURRENTLY USED

FIELD DESIGNATOR INDICATING

A REPEAT GROUP (sq3)

B-2

COMMON 	/MOBUFF/ ALLOCATION

VARB TYPE DIM

MDLEN I I

BDATA I I

DSIZE I I

WORDS 4 TO 9 OF

WBUF I MoLEN

DEFINITION
RELADD

oODO LENGTH (IN wuRDS) OF THE

WORKING BUFFLR (fBUF)

cool SUBSCRIP.T (ONE ORI(uIN) FROM

BEGINNING OF WORKING BuFFER

(wBUF) 	TO BEGINNING OF ITS

DATA AREA (I.E- PORTION OF

WBUF WHICH GROWS UP FROM

THE BOTTOM)

0002 	 TOTAL NUMBER OF WORDS OF THE

WORKING BUFFER (OBUF) WHICH

ARE CURRENTLY IN USE, THE

WORKING BUFFER IS DIVIDEU

INTO TWO AREAS OF DATA -. ONE

AT THE TOP AND ONE AT THE

BOTTOM. DSIZE 15 THE TOTAL

SIZE OF THESE TWO AREAS.

/MDBUFF/ ARE NOT USLD

DOll WORKING BUFFER OF MOLEN WORDS

B-3

